» Articles » PMID: 21980526

The N-terminal, Polybasic Region is Critical for Prion Protein Neuroprotective Activity

Overview
Journal PLoS One
Date 2011 Oct 8
PMID 21980526
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Several lines of evidence suggest that the normal form of the prion protein, PrP(C), exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrP(C) to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (Δ32-134, called F35). To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (Δ23-31, Δ23-111, and Δ23-134) to rescue the phenotype of Tg(F35) mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although Δ23-31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrP(C) neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases.

Citing Articles

Efficient enzyme-free isolation of brain-derived extracellular vesicles.

Matamoros-Angles A, Karadjuzovic E, Mohammadi B, Song F, Brenna S, Meister S J Extracell Vesicles. 2024; 13(11):e70011.

PMID: 39508423 PMC: 11541858. DOI: 10.1002/jev2.70011.


A tetracationic porphyrin with dual anti-prion activity.

Masone A, Zucchelli C, Caruso E, Lavigna G, Erana H, Giachin G iScience. 2023; 26(9):107480.

PMID: 37636075 PMC: 10448035. DOI: 10.1016/j.isci.2023.107480.


Hereditary E200K mutation within the prion protein gene alters human iPSC derived cardiomyocyte function.

Wood A, Foliaki S, Groveman B, Walters R, Williams K, Yuan J Sci Rep. 2022; 12(1):15788.

PMID: 36138047 PMC: 9500067. DOI: 10.1038/s41598-022-19631-5.


Anchorless risk or released benefit? An updated view on the ADAM10-mediated shedding of the prion protein.

Mohammadi B, Song F, Matamoros-Angles A, Shafiq M, Damme M, Puig B Cell Tissue Res. 2022; 392(1):215-234.

PMID: 35084572 PMC: 10113312. DOI: 10.1007/s00441-022-03582-4.


Biological Functions of the Intrinsically Disordered N-Terminal Domain of the Prion Protein: A Possible Role of Liquid-Liquid Phase Separation.

Polido S, Kamps J, Tatzelt J Biomolecules. 2021; 11(8).

PMID: 34439867 PMC: 8391301. DOI: 10.3390/biom11081201.


References
1.
Taubner L, Bienkiewicz E, Copie V, Caughey B . Structure of the flexible amino-terminal domain of prion protein bound to a sulfated glycan. J Mol Biol. 2009; 395(3):475-90. PMC: 2830820. DOI: 10.1016/j.jmb.2009.10.075. View

2.
Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P . Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci. 2010; 13(3):310-8. DOI: 10.1038/nn.2483. View

3.
Resenberger U, Harmeier A, Woerner A, Goodman J, Muller V, Krishnan R . The cellular prion protein mediates neurotoxic signalling of β-sheet-rich conformers independent of prion replication. EMBO J. 2011; 30(10):2057-70. PMC: 3098494. DOI: 10.1038/emboj.2011.86. View

4.
Baumann F, Tolnay M, Brabeck C, Pahnke J, Kloz U, Niemann H . Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO J. 2007; 26(2):538-47. PMC: 1783444. DOI: 10.1038/sj.emboj.7601510. View

5.
Oglecka K, Lundberg P, Magzoub M, Goran Eriksson L, Langel U, Graslund A . Relevance of the N-terminal NLS-like sequence of the prion protein for membrane perturbation effects. Biochim Biophys Acta. 2007; 1778(1):206-13. DOI: 10.1016/j.bbamem.2007.09.034. View