» Articles » PMID: 21928951

Bayesian Estimation of Self-similarity Exponent

Overview
Date 2011 Sep 21
PMID 21928951
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

In this study we propose a bayesian approach to the estimation of the Hurst exponent in terms of linear mixed models. Even for unevenly sampled signals and signals with gaps, our method is applicable. We test our method by using artificial fractional brownian motion of different length and compare it with the detrended fluctuation analysis technique. The estimation of the Hurst exponent of a Rosenblatt process is shown as an example of an H-self-similar process with non-gaussian dimensional distribution. Additionally, we perform an analysis with real data, the Dow-Jones Industrial Average closing values, and analyze its temporal variation of the Hurst exponent.

Citing Articles

Bayesian deep learning for error estimation in the analysis of anomalous diffusion.

Seckler H, Metzler R Nat Commun. 2022; 13(1):6717.

PMID: 36344559 PMC: 9640593. DOI: 10.1038/s41467-022-34305-6.


Anomalous diffusion and asymmetric tempering memory in neutrophil chemotaxis.

Dieterich P, Lindemann O, Moskopp M, Tauzin S, Huttenlocher A, Klages R PLoS Comput Biol. 2022; 18(5):e1010089.

PMID: 35584137 PMC: 9154114. DOI: 10.1371/journal.pcbi.1010089.


Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation.

Lo M, Chiang W, Hsieh W, Escobar C, Buijs R, Hu K Front Physiol. 2016; 7:174.

PMID: 27242548 PMC: 4870237. DOI: 10.3389/fphys.2016.00174.


Simulated shift work in rats perturbs multiscale regulation of locomotor activity.

Hsieh W, Escobar C, Yugay T, Lo M, Pittman-Polletta B, Salgado-Delgado R J R Soc Interface. 2014; 11(96).

PMID: 24829282 PMC: 4032547. DOI: 10.1098/rsif.2014.0318.