Bayesian Estimation of Self-similarity Exponent
Overview
Physiology
Public Health
Affiliations
In this study we propose a bayesian approach to the estimation of the Hurst exponent in terms of linear mixed models. Even for unevenly sampled signals and signals with gaps, our method is applicable. We test our method by using artificial fractional brownian motion of different length and compare it with the detrended fluctuation analysis technique. The estimation of the Hurst exponent of a Rosenblatt process is shown as an example of an H-self-similar process with non-gaussian dimensional distribution. Additionally, we perform an analysis with real data, the Dow-Jones Industrial Average closing values, and analyze its temporal variation of the Hurst exponent.
Bayesian deep learning for error estimation in the analysis of anomalous diffusion.
Seckler H, Metzler R Nat Commun. 2022; 13(1):6717.
PMID: 36344559 PMC: 9640593. DOI: 10.1038/s41467-022-34305-6.
Anomalous diffusion and asymmetric tempering memory in neutrophil chemotaxis.
Dieterich P, Lindemann O, Moskopp M, Tauzin S, Huttenlocher A, Klages R PLoS Comput Biol. 2022; 18(5):e1010089.
PMID: 35584137 PMC: 9154114. DOI: 10.1371/journal.pcbi.1010089.
Lo M, Chiang W, Hsieh W, Escobar C, Buijs R, Hu K Front Physiol. 2016; 7:174.
PMID: 27242548 PMC: 4870237. DOI: 10.3389/fphys.2016.00174.
Simulated shift work in rats perturbs multiscale regulation of locomotor activity.
Hsieh W, Escobar C, Yugay T, Lo M, Pittman-Polletta B, Salgado-Delgado R J R Soc Interface. 2014; 11(96).
PMID: 24829282 PMC: 4032547. DOI: 10.1098/rsif.2014.0318.