» Articles » PMID: 21914797

Crystal Structure of C-terminal Truncated Apolipoprotein A-I Reveals the Assembly of High Density Lipoprotein (HDL) by Dimerization

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2011 Sep 15
PMID 21914797
Citations 102
Authors
Affiliations
Soon will be listed here.
Abstract

Apolipoprotein A-I (apoA-I) plays important structural and functional roles in plasma high density lipoprotein (HDL) that is responsible for reverse cholesterol transport. However, a molecular understanding of HDL assembly and function remains enigmatic. The 2.2-Å crystal structure of Δ(185-243)apoA-I reported here shows that it forms a half-circle dimer. The backbone of the dimer consists of two elongated antiparallel proline-kinked helices (five AB tandem repeats). The N-terminal domain of each molecule forms a four-helix bundle with the helical C-terminal region of the symmetry-related partner. The central region forms a flexible domain with two antiparallel helices connecting the bundles at each end. The two-domain dimer structure based on helical repeats suggests the role of apoA-I in the formation of discoidal HDL particles. Furthermore, the structure suggests the possible interaction with lecithin-cholesterol acyltransferase and may shed light on the molecular details of the effect of the Milano, Paris, and Fin mutations.

Citing Articles

Molecular Simulation of the Binding of Amyloid Beta to Apolipoprotein A-I in High-Density Lipoproteins.

Malajczuk C, Mancera R Int J Mol Sci. 2025; 26(3).

PMID: 39941148 PMC: 11818119. DOI: 10.3390/ijms26031380.


Foam fractionation studies of recombinant human apolipoprotein A-I.

Lethcoe K, Fox C, Hafiane A, Kiss R, Liu J, Ren G Biochim Biophys Acta Biomembr. 2024; 1866(7):184375.

PMID: 39128552 PMC: 11365745. DOI: 10.1016/j.bbamem.2024.184375.


An atomistic characterization of high-density lipoproteins and the conserved "LN" region of apoA-I.

Malajczuk C, Mancera R Biophys J. 2024; 123(9):1116-1128.

PMID: 38555508 PMC: 11079945. DOI: 10.1016/j.bpj.2024.03.039.


Flipped C-Terminal Ends of APOA1 Promote ABCA1-Dependent Cholesterol Efflux by Small HDLs.

He Y, Pavanello C, Hutchins P, Tang C, Pourmousa M, Vaisar T Circulation. 2023; 149(10):774-787.

PMID: 38018436 PMC: 10913861. DOI: 10.1161/CIRCULATIONAHA.123.065959.


Atheroprotective Effect of Fucoidan in THP-1 Macrophages by Potential Upregulation of ABCA1.

Mirza Z, Al-Saedi D, Saddeek S, Almowallad S, Almassabi R, Huwait E Biomedicines. 2023; 11(11).

PMID: 38001931 PMC: 10669811. DOI: 10.3390/biomedicines11112929.


References
1.
Gursky O, Atkinson D . Thermal unfolding of human high-density apolipoprotein A-1: implications for a lipid-free molten globular state. Proc Natl Acad Sci U S A. 1996; 93(7):2991-5. PMC: 39748. DOI: 10.1073/pnas.93.7.2991. View

2.
Bielicki J, Oda M . Apolipoprotein A-I(Milano) and apolipoprotein A-I(Paris) exhibit an antioxidant activity distinct from that of wild-type apolipoprotein A-I. Biochemistry. 2002; 41(6):2089-96. DOI: 10.1021/bi011716p. View

3.
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E . UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605-12. DOI: 10.1002/jcc.20084. View

4.
Marqusee S, Baldwin R . Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc Natl Acad Sci U S A. 1987; 84(24):8898-902. PMC: 299658. DOI: 10.1073/pnas.84.24.8898. View

5.
Curtiss L, Parks J, Thomas M, Kearns M . Alteration in apolipoprotein A-I 22-mer repeat order results in a decrease in lecithin:cholesterol acyltransferase reactivity. J Biol Chem. 1997; 272(11):7278-84. DOI: 10.1074/jbc.272.11.7278. View