» Articles » PMID: 21899827

Glucuronidation of the Steroid Enantiomers Ent-17β-estradiol, Ent-androsterone and Ent-etiocholanolone by the Human UDP-glucuronosyltransferases

Overview
Date 2011 Sep 9
PMID 21899827
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Steroids enantiomers are interesting compounds for detailed exploration of drug metabolizing enzymes, such as the UDP-glucuronosyltransferases (UGTs). We have now studied the glucuronidation of the enantiomers of estradiol, androsterone and etiocholanolone by the 19 human UGTs of subfamilies 1A, 2A and 2B. The results reveal that the pattern of human UGTs of subfamily 2B that glucuronidate ent-17β-estradiol, particularly 2B15 and 2B17, resembles the glucuronidation of epiestradiol (17α-estradiol) rather than 17β-estradiol, the main physiological estrogen. The UGTs of subfamilies 1A and 2A exhibit higher degree of regioselectivity than enantioselectivity in the conjugation of these estradiols, regardless of whether the activity is primarily toward the non-chiral site, 3-OH (UGT1A1, UGT1A3, UGT1A7, UGT1A8 and, above all, UGT1A10), or the 17-OH (UGT1A4). In the cases of etiocholanolone and androsterone, glucuronidation of the ent-androgens, like the conjugation of the natural androgens, is mainly catalyzed by UGTs of subfamilies 2A and 2B. Nevertheless, the glucuronidation of ent-etiocholanolone and ent-androsterone by both UGT2B7 and UGT2B17 differs considerably from their respective activity toward the corresponding endogenous androgens, whereas UGT2A1-catalyzed conjugation is much less affected by the stereochemistry differences. Kinetic analyses reveal that the K(m) value of UGT2A1 for ent-estradiol is much higher than the corresponding value in the other two high activity enzymes, UGT1A10 and UGT2B7. Taken together, the results highlight large enantioselectivity differences between individual UGTs, particularly those of subfamily 2B.

Citing Articles

Neurosteroid enantiomers as potentially novel neurotherapeutics.

Covey D, Evers A, Izumi Y, Maguire J, Mennerick S, Zorumski C Neurosci Biobehav Rev. 2023; 149:105191.

PMID: 37085023 PMC: 10750765. DOI: 10.1016/j.neubiorev.2023.105191.


Sexual dimorphism: increased sterol excretion leads to hypocholesterolaemia in female hyperbilirubinaemic Gunn rats.

Vidimce J, Pillay J, Ronda O, Boon A, Pennell E, Ashton K J Physiol. 2022; 600(8):1889-1911.

PMID: 35156712 PMC: 9310728. DOI: 10.1113/JP282395.


The Functionality of UDP-Glucuronosyltransferase Genetic Variants and their Association with Drug Responses and Human Diseases.

Jarrar Y, Lee S J Pers Med. 2021; 11(6).

PMID: 34198586 PMC: 8231948. DOI: 10.3390/jpm11060554.


Mitochondrial Function, Fatty Acid Metabolism, and Body Composition in the Hyperbilirubinemic Gunn Rat.

Vidimce J, Pillay J, Shrestha N, Dong L, Neuzil J, Wagner K Front Pharmacol. 2021; 12:586715.

PMID: 33762933 PMC: 7982585. DOI: 10.3389/fphar.2021.586715.


The Inhibition of the Components from Shengmai Injection towards UDP-Glucuronosyltransferase.

Jiang L, Zhao J, Cao Y, Hong M, Sun D, Sun X Evid Based Complement Alternat Med. 2014; 2014:594354.

PMID: 25530784 PMC: 4229968. DOI: 10.1155/2014/594354.


References
1.
Itaaho K, Court M, Uutela P, Kostiainen R, Radominska-Pandya A, Finel M . Dopamine is a low-affinity and high-specificity substrate for the human UDP-glucuronosyltransferase 1A10. Drug Metab Dispos. 2009; 37(4):768-75. PMC: 2680538. DOI: 10.1124/dmd.108.025692. View

2.
Mackenzie P, Bock K, Burchell B, Guillemette C, Ikushiro S, Iyanagi T . Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics. 2005; 15(10):677-85. DOI: 10.1097/01.fpc.0000173483.13689.56. View

3.
Laakkonen L, Finel M . A molecular model of the human UDP-glucuronosyltransferase 1A1, its membrane orientation, and the interactions between different parts of the enzyme. Mol Pharmacol. 2010; 77(6):931-9. DOI: 10.1124/mol.109.063289. View

4.
Radominska-Pandya A, Czernik P, Little J, Battaglia E, Mackenzie P . Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab Rev. 1999; 31(4):817-99. DOI: 10.1081/dmr-100101944. View

5.
Miley M, Zielinska A, Keenan J, Bratton S, Radominska-Pandya A, Redinbo M . Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzyme UDP-glucuronosyltransferase 2B7. J Mol Biol. 2007; 369(2):498-511. PMC: 1976284. DOI: 10.1016/j.jmb.2007.03.066. View