» Articles » PMID: 21892383

Impact of Absolute Stereochemistry on the Antiangiogenic and Antifungal Activities of Itraconazole

Overview
Specialty Chemistry
Date 2011 Sep 28
PMID 21892383
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Itraconazole is used clinically as an antifungal agent and has recently been shown to possess antiangiogenic acitivity. Itraconazole has three chiral centers that give rise to eight stereoisomers. The complete role of stereochemistry in the two activities of itraconazole, however, has not been addressed adequately. For the first time, all eight stereoisomers of itraconazole (1a-1h) have been synthesized and evaluated for activity against human endothelial cell proliferation and for antifungal activity against five fungal strains. Distinct antiangiogenic and antifungal activity profiles of the trans- stereoisomers, especially 1e and 1f, suggest different molecular mechanisms underlying the anti-angiogenic and anti-fungal activities of itraconazole.

Citing Articles

Itraconazole Reverts ABCB1-Mediated Docetaxel Resistance in Prostate Cancer.

Lima T, Souza L, Iglesias-Gato D, Elversang J, Jorgensen F, Kallunki T Front Pharmacol. 2022; 13:869461.

PMID: 35721223 PMC: 9203833. DOI: 10.3389/fphar.2022.869461.


Design and Synthesis of Tetrazole- and Pyridine-Containing Itraconazole Analogs as Potent Angiogenesis Inhibitors.

Li Y, Pasunooti K, Peng H, Li R, Shi W, Liu W ACS Med Chem Lett. 2020; 11(6):1111-1117.

PMID: 32550989 PMC: 7294555. DOI: 10.1021/acsmedchemlett.9b00438.


Structural basis for itraconazole-mediated NPC1 inhibition.

Long T, Qi X, Hassan A, Liang Q, De Brabander J, Li X Nat Commun. 2020; 11(1):152.

PMID: 31919352 PMC: 6952396. DOI: 10.1038/s41467-019-13917-5.


Inhibitors of Brassinosteroid Biosynthesis and Signal Transduction.

Rozhon W, Akter S, Fernandez A, Poppenberger B Molecules. 2019; 24(23).

PMID: 31795392 PMC: 6930552. DOI: 10.3390/molecules24234372.


Structure-Activity Relationships for Itraconazole-Based Triazolone Analogues as Hedgehog Pathway Inhibitors.

Pace J, Teske K, Chau L, Dash R, Zaino A, Wechsler-Reya R J Med Chem. 2019; 62(8):3873-3885.

PMID: 30896941 PMC: 7450990. DOI: 10.1021/acs.jmedchem.8b01283.


References
1.
Rupp B, Raub S, Marian C, Holtje H . Molecular design of two sterol 14alpha-demethylase homology models and their interactions with the azole antifungals ketoconazole and bifonazole. J Comput Aided Mol Des. 2005; 19(3):149-63. DOI: 10.1007/s10822-005-3692-7. View

2.
Heeres J, Backx L, Van Cutsem J . Antimycotic azoles. 7. Synthesis and antifungal properties of a series of novel triazol-3-ones. J Med Chem. 1984; 27(7):894-900. DOI: 10.1021/jm00373a015. View

3.
Lamb D, Kelly D, Waterman M, Stromstedt M, Rozman D, Kelly S . Characteristics of the heterologously expressed human lanosterol 14alpha-demethylase (other names: P45014DM, CYP51, P45051) and inhibition of the purified human and Candida albicans CYP51 with azole antifungal agents. Yeast. 1999; 15(9):755-63. DOI: 10.1002/(SICI)1097-0061(19990630)15:9<755::AID-YEA417>3.0.CO;2-8. View

4.
Trosken E, Adamska M, Arand M, Zarn J, Patten C, Volkel W . Comparison of lanosterol-14 alpha-demethylase (CYP51) of human and Candida albicans for inhibition by different antifungal azoles. Toxicology. 2006; 228(1):24-32. DOI: 10.1016/j.tox.2006.08.007. View

5.
Kunze K, Nelson W, Kharasch E, Thummel K, Isoherranen N . Stereochemical aspects of itraconazole metabolism in vitro and in vivo. Drug Metab Dispos. 2006; 34(4):583-90. DOI: 10.1124/dmd.105.008508. View