» Articles » PMID: 21873243

An Integrated Model of Fixational Eye Movements and Microsaccades

Overview
Specialty Science
Date 2011 Aug 30
PMID 21873243
Citations 65
Authors
Affiliations
Soon will be listed here.
Abstract

When we fixate a stationary target, our eyes generate miniature (or fixational) eye movements involuntarily. These fixational eye movements are classified as slow components (physiological drift, tremor) and microsaccades, which represent rapid, small-amplitude movements. Here we propose an integrated mathematical model for the generation of slow fixational eye movements and microsaccades. The model is based on the concept of self-avoiding random walks in a potential, a process driven by a self-generated activation field. The self-avoiding walk generates persistent movements on a short timescale, whereas, on a longer timescale, the potential produces antipersistent motions that keep the eye close to an intended fixation position. We introduce microsaccades as fast movements triggered by critical activation values. As a consequence, both slow movements and microsaccades follow the same law of motion; i.e., movements are driven by the self-generated activation field. Thus, the model contributes a unified explanation of why it has been a long-standing problem to separate slow movements and microsaccades with respect to their motion-generating principles. We conclude that the concept of a self-avoiding random walk captures fundamental properties of fixational eye movements and provides a coherent theoretical framework for two physiologically distinct movement types.

Citing Articles

A paradoxical misperception of relative motion.

DAngelo J, Tiruveedhula P, Weber R, Arathorn D, Roorda A Proc Natl Acad Sci U S A. 2024; 121(48):e2410755121.

PMID: 39570307 PMC: 11621632. DOI: 10.1073/pnas.2410755121.


Seeing on the fly: Physiological and behavioral evidence show that space-to-space representation and processing enable fast and efficient performance by the visual system.

Gur M J Vis. 2024; 24(11):11.

PMID: 39392446 PMC: 11472890. DOI: 10.1167/jov.24.11.11.


Consequences of eye movements for spatial selectivity.

Intoy J, Li Y, Bowers N, Victor J, Poletti M, Rucci M Curr Biol. 2024; 34(14):3265-3272.e4.

PMID: 38981478 PMC: 11348862. DOI: 10.1016/j.cub.2024.06.016.


A paradoxical misperception of relative motion.

DAngelo J, Tiruveedhula P, Weber R, Arathorn D, Roorda A bioRxiv. 2024; .

PMID: 38895454 PMC: 11185587. DOI: 10.1101/2024.06.04.596708.


Common structure of saccades and microsaccades in visual perception.

Wang Z, Meghanathan R, Pollmann S, Wang L J Vis. 2024; 24(4):20.

PMID: 38656530 PMC: 11044844. DOI: 10.1167/jov.24.4.20.


References
1.
Poletti M, Rucci M . Eye movements under various conditions of image fading. J Vis. 2010; 10(3):6.1-18. PMC: 2951333. DOI: 10.1167/10.3.6. View

2.
Otero-Millan J, Troncoso X, Macknik S, Serrano-Pedraza I, Martinez-Conde S . Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. J Vis. 2009; 8(14):21.1-18. DOI: 10.1167/8.14.21. View

3.
Burak Y, Rokni U, Meister M, Sompolinsky H . Bayesian model of dynamic image stabilization in the visual system. Proc Natl Acad Sci U S A. 2010; 107(45):19525-30. PMC: 2984143. DOI: 10.1073/pnas.1006076107. View

4.
Martinez-Conde S, Macknik S, Troncoso X, Hubel D . Microsaccades: a neurophysiological analysis. Trends Neurosci. 2009; 32(9):463-75. DOI: 10.1016/j.tins.2009.05.006. View

5.
Engbert R . Flick-induced flips in perception. Neuron. 2006; 49(2):168-70. DOI: 10.1016/j.neuron.2006.01.005. View