» Articles » PMID: 21832980

Canonical Wnt/β-catenin Signaling Mediates Transforming Growth Factor-β1-driven Podocyte Injury and Proteinuria

Overview
Journal Kidney Int
Publisher Elsevier
Specialty Nephrology
Date 2011 Aug 12
PMID 21832980
Citations 81
Authors
Affiliations
Soon will be listed here.
Abstract

Transforming growth factor-β1 (TGF-β1) upregulation occurs in virtually all chronic kidney diseases and is associated with podocyte injury and proteinuria; however, the mechanisms contributing to this in vivo are ambiguous. In vitro, incubation of podocytes with TGF-β1 induced Wnt1 expression, β-catenin activation, and stimulated the expression of Wnt/β-catenin downstream target genes. Ectopic expression of Wnt1 or β-catenin mimicked TGF-β1, induced Snail1, and suppressed nephrin expression. The Wnt antagonist, Dickkopf-1, blocked TGF-β1-induced β-catenin activation, Snail1 induction, and nephrin suppression. In vivo, ectopic expression of TGF-β1 induced Wnt1 expression, activated β-catenin, and upregulated Wnt target genes such as Snail1, MMP-7, MMP-9, desmin, Fsp1, and PAI-1 in mouse glomeruli, leading to podocyte injury and albuminuria. Consistently, concomitant expression of Dickkopf-1 gene abolished β-catenin activation, inhibited TGF-β1-triggered Wnt target gene expression, and mitigated albuminuria. Thus, canonical Wnt/β-catenin signaling mediates TGF-β1-driven podocyte injury and proteinuria. These studies suggest that Wnt/β-catenin signaling may be exploited as a therapeutic target for the treatment of proteinuric kidney diseases.

Citing Articles

UDA-seq: universal droplet microfluidics-based combinatorial indexing for massive-scale multimodal single-cell sequencing.

Li Y, Huang Z, Xu L, Fan Y, Ping J, Li G Nat Methods. 2025; .

PMID: 39833568 DOI: 10.1038/s41592-024-02586-y.


The Pathogenesis of Nephrotic Syndrome: A Perspective from B Cells.

Zhu S, Zhang J, Gao L, Ye Q, Mao J Kidney Dis (Basel). 2024; 10(6):531-544.

PMID: 39664337 PMC: 11631018. DOI: 10.1159/000540511.


Roles of macrophages in lupus nephritis.

Cheng Y, Liu L, Ye Y, He Y, Hu W, Ke H Front Pharmacol. 2024; 15:1477708.

PMID: 39611168 PMC: 11602334. DOI: 10.3389/fphar.2024.1477708.


Matrix metalloproteinases in kidney homeostasis and diseases: an update.

Tan R, Liu Y Am J Physiol Renal Physiol. 2024; 327(6):F967-F984.

PMID: 39361724 PMC: 11687849. DOI: 10.1152/ajprenal.00179.2024.


Scutellarin ameliorates diabetic nephropathy via TGF-β1 signaling pathway.

Huang B, Han R, Tan H, Zhu W, Li Y, Jiang F Nat Prod Bioprospect. 2024; 14(1):25.

PMID: 38656633 PMC: 11043297. DOI: 10.1007/s13659-024-00446-y.


References
1.
Wang D, Li Y, Wu C, Liu Y . PINCH1 is transcriptional regulator in podocytes that interacts with WT1 and represses podocalyxin expression. PLoS One. 2011; 6(2):e17048. PMC: 3044754. DOI: 10.1371/journal.pone.0017048. View

2.
Carroll T, Park J, Hayashi S, Majumdar A, McMahon A . Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell. 2005; 9(2):283-92. DOI: 10.1016/j.devcel.2005.05.016. View

3.
Ten Berge D, Koole W, Fuerer C, Fish M, Eroglu E, Nusse R . Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell. 2008; 3(5):508-18. PMC: 2683270. DOI: 10.1016/j.stem.2008.09.013. View

4.
Yamaguchi Y, Iwano M, Suzuki D, Nakatani K, Kimura K, Harada K . Epithelial-mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy. Am J Kidney Dis. 2009; 54(4):653-64. DOI: 10.1053/j.ajkd.2009.05.009. View

5.
Gerke P, Sellin L, Kretz O, Petraschka D, Zentgraf H, Benzing T . NEPH2 is located at the glomerular slit diaphragm, interacts with nephrin and is cleaved from podocytes by metalloproteinases. J Am Soc Nephrol. 2005; 16(6):1693-702. DOI: 10.1681/ASN.2004060439. View