Predicting Disease Risks from Highly Imbalanced Data Using Random Forest
Overview
Affiliations
Background: We present a method utilizing Healthcare Cost and Utilization Project (HCUP) dataset for predicting disease risk of individuals based on their medical diagnosis history. The presented methodology may be incorporated in a variety of applications such as risk management, tailored health communication and decision support systems in healthcare.
Methods: We employed the National Inpatient Sample (NIS) data, which is publicly available through Healthcare Cost and Utilization Project (HCUP), to train random forest classifiers for disease prediction. Since the HCUP data is highly imbalanced, we employed an ensemble learning approach based on repeated random sub-sampling. This technique divides the training data into multiple sub-samples, while ensuring that each sub-sample is fully balanced. We compared the performance of support vector machine (SVM), bagging, boosting and RF to predict the risk of eight chronic diseases.
Results: We predicted eight disease categories. Overall, the RF ensemble learning method outperformed SVM, bagging and boosting in terms of the area under the receiver operating characteristic (ROC) curve (AUC). In addition, RF has the advantage of computing the importance of each variable in the classification process.
Conclusions: In combining repeated random sub-sampling with RF, we were able to overcome the class imbalance problem and achieve promising results. Using the national HCUP data set, we predicted eight disease categories with an average AUC of 88.79%.
Ha M, Cho W, So M, Lee D, Kim Y, Yeo H J Korean Med Sci. 2025; 40(7):e18.
PMID: 39995255 PMC: 11858608. DOI: 10.3346/jkms.2025.40.e18.
Ogwel B, Mzazi V, Awuor A, Okonji C, Anyango R, Oreso C BMC Med Inform Decis Mak. 2025; 25(1):28.
PMID: 39815316 PMC: 11737202. DOI: 10.1186/s12911-025-02855-6.
Koo Y, Kim M, Lee W J Clin Neurol. 2025; 21(1):21-30.
PMID: 39778564 PMC: 11711266. DOI: 10.3988/jcn.2024.0175.
Zhang X, Mo J, Yang K, Tan T, Zhao C, Qin H Front Nutr. 2025; 11():1519782.
PMID: 39777077 PMC: 11706202. DOI: 10.3389/fnut.2024.1519782.
Application of machine learning for mass spectrometry-based multi-omics in thyroid diseases.
Che Y, Zhao M, Gao Y, Zhang Z, Zhang X Front Mol Biosci. 2025; 11:1483326.
PMID: 39741929 PMC: 11685090. DOI: 10.3389/fmolb.2024.1483326.