» Articles » PMID: 217983

Factors Affecting the Rate of Incorporation of a False Transmitter into Mammalian Motor Nerve Terminals

Overview
Journal J Physiol
Specialty Physiology
Date 1978 Dec 1
PMID 217983
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

1. The incorporation of acetylmonoethylcholine (AMECh) into transmitter store at the mammalian neuromuscular junction has been studied using electrophysiological techniques. 2. Incubation of rat muscle in the presence of 0.1 mM-monoethylcholine (MECh) and 40 mM-K+ for 60-90 min produced a maximal reduction in the time constant of decay of synaptic currents and potentials, indicating that acetylcholine (ACh) had been replaced by AMECh in the released quanta. 3. Under resting conditions, muscles incubated for up to 24 hr in the presence of MECh showed no incorporation of AMECh into the released transmitter. In contrast, muscles pre-loaded with AMECh and then incubated in choline-containing medium showed a substantial reversion to ACh in the released transmitter within 4 hr. 4. It is suggested that this difference results from the rate of synthesis or packaging of transmitter being considerably slower with MECh than with choline, so that stimulation in the presence of MECh causes an over-all depletion of transmitter stores that does not occur with choline as the precursor. Measurements of m.e.p.c. amplitude following K+-evoked release in the presence of MECh or choline confirmed this interpretation. 5. In order to test whether newly formed AMECh is incorporated into a single homogeneous pool of transmitter from which the released quanta are derived, the rate of incorporation of AMECh into the released transmitter was measured as a function of the number of quanta released when transmitter output was increased by various methods. 6. The number of quanta released before 63% conversion of the released transmitter to AMECh was brought about varied from 1.3 X 10(5) (nerve stimulation at 3 Hz) to about 4 X 10(5) (release by high-K+ solution). With nerve stimulation in Mg2+-blocked muscles the value was 2.5 X 10(5). 7. Incorporation of AMECh into the quanta released by nerve stimulation appeared to take place more rapidly than its incorporation into spontaneously released quanta. 8. These results are discussed in terms of the compartmentation of transmitter stores in the nerve terminals.

Citing Articles

Is replenishment of the readily releasable pool associated with vesicular movement?.

Bui L, Glavinovic M Cogn Neurodyn. 2014; 8(2):99-110.

PMID: 24624230 PMC: 3945456. DOI: 10.1007/s11571-013-9264-y.


Accounting for the shapes and size distributions of miniature endplate currents.

Van Der Kloot W, Naves L Biophys J. 1996; 70(5):2175-84.

PMID: 9172741 PMC: 1225192. DOI: 10.1016/S0006-3495(96)79783-7.


Localizing quantal currents along frog neuromuscular junctions.

Van Der Kloot W, Naves L J Physiol. 1996; 497 ( Pt 1):189-98.

PMID: 8951721 PMC: 1160922. DOI: 10.1113/jphysiol.1996.sp021759.


Nicotinic agonists antagonize quantal size increases and evoked release at frog neuromuscular junction.

Van Der Kloot W J Physiol. 1993; 468:567-89.

PMID: 8254525 PMC: 1143844. DOI: 10.1113/jphysiol.1993.sp019789.


Changes in MEPP frequency during depression of evoked release at the frog neuromuscular junction.

Zengel J, Sosa M J Physiol. 1994; 477(Pt 2):267-77.

PMID: 7932218 PMC: 1155627. DOI: 10.1113/jphysiol.1994.sp020189.


References
1.
ELMQVIST D, QUASTEL D . PRESYNAPTIC ACTION OF HEMICHOLINIUM AT THE NEUROMUSCULAR JUNCTION. J Physiol. 1965; 177:463-82. PMC: 1357260. DOI: 10.1113/jphysiol.1965.sp007605. View

2.
Beani L, Bianchi C, Ledda F . THE EFFECT OF TUBOCURARINE ON ACETYLCHOLINE RELEASE FROM MOTOR NERVE TERMINALS. J Physiol. 1964; 174:172-83. PMC: 1368946. DOI: 10.1113/jphysiol.1964.sp007480. View

3.
Del Castillo J, Katz B . Statistical factors involved in neuromuscular facilitation and depression. J Physiol. 1954; 124(3):574-85. PMC: 1366293. DOI: 10.1113/jphysiol.1954.sp005130. View

4.
Large W, Rang H . Variability of transmitter quanta released during incorporation of a false transmitter into cholinergic nerve terminals. J Physiol. 1978; 285:25-34. PMC: 1281739. DOI: 10.1113/jphysiol.1978.sp012554. View

5.
Collier B, Ilson D . The effect of preganglionic nerve stimulation on the accumulation of certain analogues of choline by a sympathetic ganglion. J Physiol. 1977; 264(2):489-509. PMC: 1307773. DOI: 10.1113/jphysiol.1977.sp011679. View