» Articles » PMID: 21757689

Stimulating the Substrate Folding Activity of a Single Ring GroEL Variant by Modulating the Cochaperonin GroES

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2011 Jul 16
PMID 21757689
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

In mediating protein folding, chaperonin GroEL and cochaperonin GroES form an enclosed chamber for substrate proteins in an ATP-dependent manner. The essential role of the double ring assembly of GroEL is demonstrated by the functional deficiency of the single ring GroEL(SR). The GroEL(SR)-GroES is highly stable with minimal ATPase activity. To restore the ATP cycle and the turnover of the folding chamber, we sought to weaken the GroEL(SR)-GroES interaction systematically by concatenating seven copies of groES to generate groES(7). GroES Ile-25, Val-26, and Leu-27, residues on the GroEL-GroES interface, were substituted with Asp on different groES modules of groES(7). GroES(7) variants activate ATP activity of GroEL(SR), but only some restore the substrate folding function of GroEL(SR), indicating a direct role of GroES in facilitating substrate folding through its dynamics with GroEL. Active GroEL(SR)-GroES(7) systems may resemble mammalian mitochondrial chaperonin systems.

Citing Articles

Cryo-EM structure and molecular dynamic simulations explain the enhanced stability and ATP activity of the pathological chaperonin mutant.

Syed A, Zhai J, Guo B, Zhao Y, Wang J, Chen L Structure. 2024; 32(5):575-584.e3.

PMID: 38412855 PMC: 11069440. DOI: 10.1016/j.str.2024.02.001.


Hereditary spastic paraplegia SPG13 mutation increases structural stability and ATPase activity of human mitochondrial chaperonin.

Chen L, Syed A, Balaji A Sci Rep. 2022; 12(1):18321.

PMID: 36316435 PMC: 9622745. DOI: 10.1038/s41598-022-21993-9.


Local Flexibility of a New Single-Ring Chaperonin Encoded by Bacteriophage AR9 .

Sokolova O, Pichkur E, Maslova E, Kurochkina L, Semenyuk P, Konarev P Biomedicines. 2022; 10(10).

PMID: 36289609 PMC: 9598537. DOI: 10.3390/biomedicines10102347.


Allosteric differences dictate GroEL complementation of E. coli.

Sivinski J, Ngo D, Zerio C, Ambrose A, Watson E, Kaneko L FASEB J. 2022; 36(3):e22198.

PMID: 35199390 PMC: 8887798. DOI: 10.1096/fj.202101708RR.


Structural basis for the structural dynamics of human mitochondrial chaperonin mHsp60.

Wang J, Chen L Sci Rep. 2021; 11(1):14809.

PMID: 34285302 PMC: 8292379. DOI: 10.1038/s41598-021-94236-y.


References
1.
Li Y, Zheng Z, Ramsey A, Chen L . Analysis of peptides and proteins in their binding to GroEL. J Pept Sci. 2010; 16(12):693-700. PMC: 3016943. DOI: 10.1002/psc.1288. View

2.
Hartl F, Hayer-Hartl M . Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002; 295(5561):1852-8. DOI: 10.1126/science.1068408. View

3.
Todd M, Viitanen P, Lorimer G . Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science. 1994; 265(5172):659-66. DOI: 10.1126/science.7913555. View

4.
Suzuki M, Ueno T, Iizuka R, Miura T, Zako T, Akahori R . Effect of the C-terminal truncation on the functional cycle of chaperonin GroEL: implication that the C-terminal region facilitates the transition from the folding-arrested to the folding-competent state. J Biol Chem. 2008; 283(35):23931-9. PMC: 3259756. DOI: 10.1074/jbc.M804090200. View

5.
Nielsen K, Cowan N . A single ring is sufficient for productive chaperonin-mediated folding in vivo. Mol Cell. 1998; 2(1):93-9. DOI: 10.1016/s1097-2765(00)80117-3. View