» Articles » PMID: 21748262

Advances in Bone Repair with Nanobiomaterials: Mini-review

Overview
Journal Cytotechnology
Specialties Biotechnology
Genetics
Date 2011 Jul 13
PMID 21748262
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Nanotechnology has emerged to be one of the most powerful engineering approaches in the past half a century. Nanotechnology brought nanomaterials for biomedical use with diverse applications. In the present manuscript we summarize the recent progress in adopting nanobiomaterials for bone healing and repair approaches. We first discuss the use of nanophase surface modification in manipulating metals and ceramics for bone implantation, and then the use of polymers as nanofiber scaffolds in bone repair. Finally we briefly present the potential use of the nanoparticle delivery system as adjunct system in promoting bone regeneration following fracture.

Citing Articles

Advanced Strategies for Enhancing the Biocompatibility and Antibacterial Properties of Implantable Structures.

Mishchenko O, Volchykhina K, Maksymov D, Manukhina O, Pogorielov M, Pavlenko M Materials (Basel). 2025; 18(4).

PMID: 40004345 PMC: 11857362. DOI: 10.3390/ma18040822.


Development of biomaterials for bone tissue engineering based on bile acids.

Liu Y, Liu X, Liu C, Zhang W, Shi T, Liu G J Mater Sci Mater Med. 2025; 36(1):11.

PMID: 39812871 PMC: 11735600. DOI: 10.1007/s10856-024-06850-7.


Xenogenic Implantation of Human Mesenchymal Stromal Cells Using a Novel 3D-Printed Scaffold of PLGA and Graphene Leads to a Significant Increase in Bone Mineralization in a Rat Segmental Femoral Bone Defect.

Newby S, Forsynth C, Bow A, Bourdo S, Hung M, Cheever J Nanomaterials (Basel). 2023; 13(7).

PMID: 37049243 PMC: 10097331. DOI: 10.3390/nano13071149.


Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects.

Natarajan D, Ye Z, Wang L, Ge L, Pathak J Bioeng Transl Med. 2022; 7(1):e10262.

PMID: 35111954 PMC: 8780931. DOI: 10.1002/btm2.10262.


Functionalized Graphene Nanoparticles Induce Human Mesenchymal Stem Cells to Express Distinct Extracellular Matrix Proteins Mediating Osteogenesis.

Newby S, Masi T, Griffin C, King W, Chipman A, Stephenson S Int J Nanomedicine. 2020; 15:2501-2513.

PMID: 32368037 PMC: 7171876. DOI: 10.2147/IJN.S245801.


References
1.
Genove E, Shen C, Zhang S, Semino C . The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials. 2004; 26(16):3341-51. DOI: 10.1016/j.biomaterials.2004.08.012. View

2.
Price R, Gutwein L, Kaledin L, Tepper F, Webster T . Osteoblast function on nanophase alumina materials: Influence of chemistry, phase, and topography. J Biomed Mater Res A. 2003; 67(4):1284-93. DOI: 10.1002/jbm.a.20011. View

3.
Powell M, Kanarek M . Nanomaterial health effects--part 1: background and current knowledge. WMJ. 2006; 105(2):16-20. View

4.
Laurencin C, Kumbar S, Nukavarapu S . Nanotechnology and orthopedics: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010; 1(1):6-10. DOI: 10.1002/wnan.25. View

5.
Fleming Jr J, CORNELL C, Muschler G . Bone cells and matrices in orthopedic tissue engineering. Orthop Clin North Am. 2000; 31(3):357-74. DOI: 10.1016/s0030-5898(05)70156-5. View