Yarnall M, Kim S, Korntner S, Bishop A
Biochem Biophys Rep. 2022; 32:101370.
PMID: 36275931
PMC: 9578986.
DOI: 10.1016/j.bbrep.2022.101370.
Shang X, Zhang W, Zhang X, Yu M, Liu J, Cheng Y
Front Immunol. 2022; 13:991091.
PMID: 36248841
PMC: 9556668.
DOI: 10.3389/fimmu.2022.991091.
Yasuda S, Miyasaka Y, Hou X, Obara Y, Shitara H, Seki Y
Biomedicines. 2022; 10(9).
PMID: 36140322
PMC: 9496148.
DOI: 10.3390/biomedicines10092221.
Kuang W, Wang X, Ding J, Li J, Ji M, Chen W
Front Immunol. 2022; 13:805311.
PMID: 35154122
PMC: 8829144.
DOI: 10.3389/fimmu.2022.805311.
Selvaggio G, Chaouiya C, Janody F
Int J Mol Sci. 2021; 22(9).
PMID: 34063110
PMC: 8125147.
DOI: 10.3390/ijms22094897.
Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma.
Ruckert M, Andrade P, Santos V, Silveira V
Cell Mol Life Sci. 2019; 76(13):2571-2592.
PMID: 30982078
PMC: 11105579.
DOI: 10.1007/s00018-019-03095-4.
High-resolution crystal structures of the D1 and D2 domains of protein tyrosine phosphatase epsilon for structure-based drug design.
Lountos G, Raran-Kurussi S, Zhao B, Dyas B, Burke Jr T, Ulrich R
Acta Crystallogr D Struct Biol. 2018; 74(Pt 10):1015-1026.
PMID: 30289412
PMC: 6173050.
DOI: 10.1107/S2059798318011919.
Optimized allosteric inhibition of engineered protein tyrosine phosphatases with an expanded palette of biarsenical small molecules.
Korntner S, Pomorski A, Krezel A, Bishop A
Bioorg Med Chem. 2018; 26(9):2610-2620.
PMID: 29673715
PMC: 5935566.
DOI: 10.1016/j.bmc.2018.04.026.
PRL2 links magnesium flux and sex-dependent circadian metabolic rhythms.
Uetani N, Hardy S, Gravel S, Kiessling S, Pietrobon A, Wong N
JCI Insight. 2017; 2(13).
PMID: 28679948
PMC: 5499375.
DOI: 10.1172/jci.insight.91722.
Structural Basis of the Oncogenic Interaction of Phosphatase PRL-1 with the Magnesium Transporter CNNM2.
Gimenez-Mascarell P, Oyenarte I, Hardy S, Breiderhoff T, Stuiver M, Kostantin E
J Biol Chem. 2016; 292(3):786-801.
PMID: 27899452
PMC: 5247653.
DOI: 10.1074/jbc.M116.759944.
A missense methionine mutation augments catalytic activity but reduces thermal stability in two protein tyrosine phosphatases.
Bishop A
Biochem Biophys Res Commun. 2016; 481(1-2):153-158.
PMID: 27816449
PMC: 5118098.
DOI: 10.1016/j.bbrc.2016.11.001.
Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases.
Zhao B, Keasey S, Tropea J, Lountos G, Dyas B, Cherry S
PLoS One. 2015; 10(8):e0134984.
PMID: 26302245
PMC: 4547750.
DOI: 10.1371/journal.pone.0134984.
Rational design of allosteric-inhibition sites in classical protein tyrosine phosphatases.
Chio C, Yu X, Bishop A
Bioorg Med Chem. 2015; 23(12):2828-38.
PMID: 25828055
PMC: 4451255.
DOI: 10.1016/j.bmc.2015.03.027.
Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2.
Chio C, Lim C, Bishop A
Biochemistry. 2014; 54(2):497-504.
PMID: 25519989
PMC: 4303306.
DOI: 10.1021/bi5013595.
Regulation of development and cancer by the R2B subfamily of RPTPs and the implications of proteolysis.
Craig S, Brady-Kalnay S
Semin Cell Dev Biol. 2014; 37:108-18.
PMID: 25223585
PMC: 4339464.
DOI: 10.1016/j.semcdb.2014.09.004.
The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis.
Hardy S, Uetani N, Wong N, Kostantin E, Labbe D, Begin L
Oncogene. 2014; 34(8):986-95.
PMID: 24632616
DOI: 10.1038/onc.2014.33.