» Articles » PMID: 21635749

Exploiting MeSH Indexing in MEDLINE to Generate a Data Set for Word Sense Disambiguation

Overview
Publisher Biomed Central
Specialty Biology
Date 2011 Jun 4
PMID 21635749
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Evaluation of Word Sense Disambiguation (WSD) methods in the biomedical domain is difficult because the available resources are either too small or too focused on specific types of entities (e.g. diseases or genes). We present a method that can be used to automatically develop a WSD test collection using the Unified Medical Language System (UMLS) Metathesaurus and the manual MeSH indexing of MEDLINE. We demonstrate the use of this method by developing such a data set, called MSH WSD.

Methods: In our method, the Metathesaurus is first screened to identify ambiguous terms whose possible senses consist of two or more MeSH headings. We then use each ambiguous term and its corresponding MeSH heading to extract MEDLINE citations where the term and only one of the MeSH headings co-occur. The term found in the MEDLINE citation is automatically assigned the UMLS CUI linked to the MeSH heading. Each instance has been assigned a UMLS Concept Unique Identifier (CUI). We compare the characteristics of the MSH WSD data set to the previously existing NLM WSD data set.

Results: The resulting MSH WSD data set consists of 106 ambiguous abbreviations, 88 ambiguous terms and 9 which are a combination of both, for a total of 203 ambiguous entities. For each ambiguous term/abbreviation, the data set contains a maximum of 100 instances per sense obtained from MEDLINE.We evaluated the reliability of the MSH WSD data set using existing knowledge-based methods and compared their performance to that of the results previously obtained by these algorithms on the pre-existing data set, NLM WSD. We show that the knowledge-based methods achieve different results but keep their relative performance except for the Journal Descriptor Indexing (JDI) method, whose performance is below the other methods.

Conclusions: The MSH WSD data set allows the evaluation of WSD algorithms in the biomedical domain. Compared to previously existing data sets, MSH WSD contains a larger number of biomedical terms/abbreviations and covers the largest set of UMLS Semantic Types. Furthermore, the MSH WSD data set has been generated automatically reusing already existing annotations and, therefore, can be regenerated from subsequent UMLS versions.

Citing Articles

Disambiguating Clinical Abbreviations by One-to-All Classification: Algorithm Development and Validation Study.

Sung S, Hu Y, Chen C JMIR Med Inform. 2024; 12:e56955.

PMID: 39352715 PMC: 11460304. DOI: 10.2196/56955.


A Dataset for Evaluating Contextualized Representation of Biomedical Concepts in Language Models.

Rouhizadeh H, Nikishina I, Yazdani A, Bornet A, Zhang B, Ehrsam J Sci Data. 2024; 11(1):455.

PMID: 38704422 PMC: 11069517. DOI: 10.1038/s41597-024-03317-w.


Classifying literature mentions of biological pathogens as experimentally studied using natural language processing.

Jimeno Yepes A, Verspoor K J Biomed Semantics. 2023; 14(1):1.

PMID: 36721225 PMC: 9889128. DOI: 10.1186/s13326-023-00282-y.


Chemical identification and indexing in PubMed full-text articles using deep learning and heuristics.

Almeida T, Antunes R, Silva J, Almeida J, Matos S Database (Oxford). 2022; 2022.

PMID: 35776534 PMC: 9248917. DOI: 10.1093/database/baac047.


O-JMeSH: creating a bilingual English-Japanese controlled vocabulary of MeSH UIDs through machine translation and mutual information.

Soares F, Tateisi Y, Takatsuki T, Yamaguchi A Genomics Inform. 2021; 19(3):e26.

PMID: 34638173 PMC: 8510863. DOI: 10.5808/gi.21014.


References
1.
Fan J, Friedman C . Generating quality word sense disambiguation test sets based on MeSH indexing. AMIA Annu Symp Proc. 2010; 2009:183-7. PMC: 2815444. View

2.
Jimeno-Yepes A, Aronson A . Knowledge-based biomedical word sense disambiguation: comparison of approaches. BMC Bioinformatics. 2010; 11:569. PMC: 3001745. DOI: 10.1186/1471-2105-11-569. View

3.
Liu H, Lussier Y, Friedman C . Disambiguating ambiguous biomedical terms in biomedical narrative text: an unsupervised method. J Biomed Inform. 2002; 34(4):249-61. DOI: 10.1006/jbin.2001.1023. View

4.
Bodenreider O . The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2003; 32(Database issue):D267-70. PMC: 308795. DOI: 10.1093/nar/gkh061. View

5.
Humphrey S, Rogers W, Kilicoglu H, Demner-Fushman D, Rindflesch T . Word Sense Disambiguation by Selecting the Best Semantic Type Based on Journal Descriptor Indexing: Preliminary Experiment. J Am Soc Inf Sci Technol. 2009; 57(1):96-113. PMC: 2771948. DOI: 10.1002/asi.20257. View