Sai K, Chen X, Li Z, Zhu C, Shukla K, Forshaw T
Redox Biol. 2021; 49:102218.
PMID: 34952463
PMC: 8715125.
DOI: 10.1016/j.redox.2021.102218.
Chen X, Lee J, Wu H, Tsang A, Furdui C
Adv Exp Med Biol. 2019; 1140:327-358.
PMID: 31347057
PMC: 9236553.
DOI: 10.1007/978-3-030-15950-4_19.
Parvez S, Long M, Poganik J, Aye Y
Chem Rev. 2018; 118(18):8798-8888.
PMID: 30148624
PMC: 6158072.
DOI: 10.1021/acs.chemrev.7b00698.
Chio I, Tuveson D
Trends Mol Med. 2017; 23(5):411-429.
PMID: 28427863
PMC: 5462452.
DOI: 10.1016/j.molmed.2017.03.004.
Duan J, Gaffrey M, Qian W
Mol Biosyst. 2017; 13(5):816-829.
PMID: 28357434
PMC: 5493446.
DOI: 10.1039/c6mb00861e.
Biological and Chemical Adaptation to Endogenous Hydrogen Peroxide Production in D39.
Lisher J, Tsui H, Ramos-Montanez S, Hentchel K, Martin J, Trinidad J
mSphere. 2017; 2(1).
PMID: 28070562
PMC: 5214746.
DOI: 10.1128/mSphere.00291-16.
Reactivity, Selectivity, and Stability in Sulfenic Acid Detection: A Comparative Study of Nucleophilic and Electrophilic Probes.
Gupta V, Paritala H, Carroll K
Bioconjug Chem. 2016; 27(5):1411-8.
PMID: 27123991
PMC: 4886738.
DOI: 10.1021/acs.bioconjchem.6b00181.
An immunochemical approach to detect oxidized protein tyrosine phosphatases using a selective C-nucleophile tag.
Garcia F, Carroll K
Mol Biosyst. 2016; 12(6):1790-8.
PMID: 26757830
PMC: 4879066.
DOI: 10.1039/c5mb00847f.
Biological chemistry and functionality of protein sulfenic acids and related thiol modifications.
Devarie-Baez N, Lopez E, Furdui C
Free Radic Res. 2015; 50(2):172-94.
PMID: 26340608
PMC: 5292231.
DOI: 10.3109/10715762.2015.1090571.
Differential alkylation-based redox proteomics--Lessons learnt.
Wojdyla K, Rogowska-Wrzesinska A
Redox Biol. 2015; 6:240-252.
PMID: 26282677
PMC: 4543216.
DOI: 10.1016/j.redox.2015.08.005.
Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins.
Brewer T, Garcia F, Onak C, Carroll K, Chang C
Annu Rev Biochem. 2015; 84:765-90.
PMID: 26034893
PMC: 6063359.
DOI: 10.1146/annurev-biochem-060614-034018.
Mass spectrometry in studies of protein thiol chemistry and signaling: opportunities and caveats.
Baez N, Reisz J, Furdui C
Free Radic Biol Med. 2014; 80:191-211.
PMID: 25261734
PMC: 4355329.
DOI: 10.1016/j.freeradbiomed.2014.09.016.
Proteomic analysis of peptides tagged with dimedone and related probes.
Martinez-Acedo P, Gupta V, Carroll K
J Mass Spectrom. 2014; 49(4):257-65.
PMID: 24719340
PMC: 4070747.
DOI: 10.1002/jms.3336.
Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection.
Reisz J, Bansal N, Qian J, Zhao W, Furdui C
Antioxid Redox Signal. 2014; 21(2):260-92.
PMID: 24382094
PMC: 4060780.
DOI: 10.1089/ars.2013.5489.
Chemical approaches to detect and analyze protein sulfenic acids.
Furdui C, Poole L
Mass Spectrom Rev. 2013; 33(2):126-46.
PMID: 24105931
PMC: 3946320.
DOI: 10.1002/mas.21384.
The redox proteome.
Go Y, Jones D
J Biol Chem. 2013; 288(37):26512-20.
PMID: 23861437
PMC: 3772199.
DOI: 10.1074/jbc.R113.464131.
Sulfenic acid chemistry, detection and cellular lifetime.
Gupta V, Carroll K
Biochim Biophys Acta. 2013; 1840(2):847-75.
PMID: 23748139
PMC: 4184475.
DOI: 10.1016/j.bbagen.2013.05.040.
Redox regulation of protein kinases.
Truong T, Carroll K
Crit Rev Biochem Mol Biol. 2013; 48(4):332-56.
PMID: 23639002
PMC: 4358782.
DOI: 10.3109/10409238.2013.790873.
Chemical biology approaches to study protein cysteine sulfenylation.
Pan J, Carroll K
Biopolymers. 2013; 101(2):165-72.
PMID: 23576224
PMC: 3919879.
DOI: 10.1002/bip.22255.
Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery.
Paulsen C, Carroll K
Chem Rev. 2013; 113(7):4633-79.
PMID: 23514336
PMC: 4303468.
DOI: 10.1021/cr300163e.