» Articles » PMID: 21586729

Stomatal Closure by Fast Abscisic Acid Signaling is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1

Overview
Journal Sci Signal
Date 2011 May 19
PMID 21586729
Citations 139
Authors
Affiliations
Soon will be listed here.
Abstract

S-type anion channels are direct targets of abscisic acid (ABA) signaling and contribute to chloride and nitrate release from guard cells, which in turn initiates stomatal closure. SLAC1 was the first component of the guard cell S-type anion channel identified. However, we found that guard cells of Arabidopsis SLAC1 mutants exhibited nitrate conductance. SLAH3 (SLAC1 homolog 3) was also present in guard cells, and coexpression of SLAH3 with the calcium ion (Ca2+)-dependent kinase CPK21 in Xenopus oocytes mediated nitrate-induced anion currents. Nitrate, calcium, and phosphorylation regulated SLAH3 activity. CPK21-dependent SLAH3 phosphorylation and activation were blocked by ABI1, a PP2C-type protein phosphatase that is inhibited by ABA and inhibits the ABA signaling pathway in guard cells. We reconstituted the ABA-stimulated phosphorylation of the SLAH3 amino-terminal domain by CPK21 in vitro by including the ABA receptor-phosphatase complex RCAR1-ABI1 in the reactions. We propose that ABA perception by the complex consisting of ABA receptors of the RCAR/PYR/PYL family and ABI1 releases CPK21 from inhibition by ABI1, and then CPK21 is further activated by an increase in the cytosolic Ca2+ concentration, leading to its phosphorylation of SLAH3. Thus, the identification of SLAH3 as the nitrate-, calcium-, and ABA-sensitive guard cell anion channel provides insights into the relationship among stomatal response to drought, signaling by nitrate, and nitrate metabolism.

Citing Articles

CPK1 activates CNGCs through phosphorylation for Ca signaling to promote root hair growth in Arabidopsis.

Zhu M, Du B, Tan Y, Yang Y, Zhang Y, Wang Y Nat Commun. 2025; 16(1):676.

PMID: 39809784 PMC: 11733299. DOI: 10.1038/s41467-025-56008-4.


Unveiling the crucial roles of abscisic acid in plant physiology: implications for enhancing stress tolerance and productivity.

Mo W, Zheng X, Shi Q, Zhao X, Chen X, Yang Z Front Plant Sci. 2024; 15:1437184.

PMID: 39640997 PMC: 11617201. DOI: 10.3389/fpls.2024.1437184.


Potassium extrusion by plant cells: evolution from an emergency valve to a driver of long-distance transport.

Hmidi D, Muraya F, Fizames C, Very A, Roelfsema M New Phytol. 2024; 245(1):69-87.

PMID: 39462778 PMC: 11617655. DOI: 10.1111/nph.20207.


Gaining or cutting SLAC: the evolution of plant guard cell signalling pathways.

Sussmilch F, Maierhofer T, Herrmann J, Voss L, Lind C, Messerer M New Phytol. 2024; 244(6):2295-2310.

PMID: 39370767 PMC: 11579433. DOI: 10.1111/nph.20172.


Mechanistic insights into phosphoactivation of SLAC1 in guard cell signaling.

Qin L, Deng Y, Zhang X, Tang L, Zhang C, Xu S Proc Natl Acad Sci U S A. 2024; 121(29):e2323040121.

PMID: 38985761 PMC: 11260165. DOI: 10.1073/pnas.2323040121.