» Articles » PMID: 21554246

AW551984: a Novel Regulator of Cardiomyogenesis in Pluripotent Embryonic Cells

Overview
Journal Biochem J
Specialty Biochemistry
Date 2011 May 11
PMID 21554246
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

An understanding of the mechanism that regulates the cardiac differentiation of pluripotent stem cells is necessary for the effective generation and expansion of cardiomyocytes as cell therapy products. In the present study, we have identified genes that modulate the cardiac differentiation of pluripotent embryonic cells. We isolated P19CL6 cell sublines that possess distinct properties in cardiomyogenesis and extracted 24 CMR (cardiomyogenesis-related candidate) genes correlated with cardiomyogenesis using a transcriptome analysis. Knockdown of the CMR genes by RNAi (RNA interference) revealed that 18 genes influence spontaneous contraction or transcript levels of cardiac marker genes in EC (embryonal carcinoma) cells. We also performed knockdown of the CMR genes in mouse ES (embryonic stem) cells and induced in vitro cardiac differentiation. Three CMR genes, AW551984, 2810405K02Rik (RIKEN cDNA 2810405K02 gene) and Cd302 (CD302 antigen), modulated the cardiac differentiation of both EC cells and ES cells. Depletion of AW551984 attenuated the expression of the early cardiac transcription factor Nkx2.5 (NK2 transcription factor related locus 5) without affecting transcript levels of pluripotency and early mesoderm marker genes during ES cell differentiation. Activation of Wnt/β-catenin signalling enhanced the expression of both AW551984 and Nkx2.5 in ES cells during embryoid body formation. Our findings indicate that AW551984 is a novel regulator of cardiomyogenesis from pluripotent embryonic cells, which links Wnt/β-catenin signalling to Nkx2.5 expression.

Citing Articles

SALL3 expression balance underlies lineage biases in human induced pluripotent stem cell differentiation.

Kuroda T, Yasuda S, Tachi S, Matsuyama S, Kusakawa S, Tano K Nat Commun. 2019; 10(1):2175.

PMID: 31092818 PMC: 6520385. DOI: 10.1038/s41467-019-09511-4.


CXCL4/PF4 is a predictive biomarker of cardiac differentiation potential of human induced pluripotent stem cells.

Ohashi F, Miyagawa S, Yasuda S, Miura T, Kuroda T, Itoh M Sci Rep. 2019; 9(1):4638.

PMID: 30874579 PMC: 6420577. DOI: 10.1038/s41598-019-40915-w.


A Method of Three-Dimensional Micro-Rotational Flow Generation for Biological Applications.

Yalikun Y, Kanda Y, Morishima K Micromachines (Basel). 2018; 7(8).

PMID: 30404312 PMC: 6190094. DOI: 10.3390/mi7080140.