» Articles » PMID: 21552464

Inferring the Sign of Kinase-Substrate Interactions by Combining Quantitative Phosphoproteomics with a Literature-Based Mammalian Kinome Network

Overview
Date 2011 May 10
PMID 21552464
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Protein phosphorylation is a reversible post-translational modification commonly used by cell signaling networks to transmit information about the extracellular environment into intracellular organelles for the regulation of the activity and sorting of proteins within the cell. For this study we reconstructed a literature-based mammalian kinase-substrate network from several online resources. The interactions within this directed graph network connect kinases to their substrates, through specific phosphosites including kinasekinase regulatory interactions. However, the "signs" of links, activation or inhibition of the substrate upon phosphorylation, within this network are mostly unknown. Here we show how we can infer the "signs" indirectly using data from quantitative phosphoproteomics experiments applied to mammalian cells combined with the literature-based kinase-substrate network. Our inference method was able to predict the sign for 321 links and 153 phosphosites on 120 kinases, resulting in signed and directed subnetwork of mammalian kinase-kinase interactions. Such an approach can rapidly advance the reconstruction of cell signaling pathways and networks regulating mammalian cells.

Citing Articles

Identification of extracellular signal-regulated kinase 1 (ERK1) direct substrates using stable isotope labeled kinase assay-linked phosphoproteomics.

Xue L, Wang P, Cao P, Zhu J, Tao W Mol Cell Proteomics. 2014; 13(11):3199-210.

PMID: 25022875 PMC: 4223502. DOI: 10.1074/mcp.O114.038588.


Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR).

Xiao K, Sun J, Kim J, Rajagopal S, Zhai B, Villen J Proc Natl Acad Sci U S A. 2010; 107(34):15299-304.

PMID: 20686112 PMC: 2930550. DOI: 10.1073/pnas.1008461107.

References
1.
Diella F, Cameron S, Gemund C, Linding R, Via A, Kuster B . Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinformatics. 2004; 5:79. PMC: 449700. DOI: 10.1186/1471-2105-5-79. View

2.
Guan K, Figueroa C, Brtva T, Zhu T, Taylor J, Barber T . Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem. 2000; 275(35):27354-9. DOI: 10.1074/jbc.M004371200. View

3.
Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A . Protein tyrosine phosphatases in the human genome. Cell. 2004; 117(6):699-711. DOI: 10.1016/j.cell.2004.05.018. View

4.
Hornbeck P, Chabra I, Kornhauser J, Skrzypek E, Zhang B . PhosphoSite: A bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics. 2004; 4(6):1551-61. DOI: 10.1002/pmic.200300772. View

5.
Lee R, Megeney L . The yeast kinome displays scale free topology with functional hub clusters. BMC Bioinformatics. 2005; 6:271. PMC: 1310538. DOI: 10.1186/1471-2105-6-271. View