» Articles » PMID: 21531920

Solution Structure of RNase P RNA

Overview
Journal RNA
Specialty Molecular Biology
Date 2011 May 3
PMID 21531920
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

The ribonucleoprotein enzyme ribonuclease P (RNase P) processes tRNAs by cleavage of precursor-tRNAs. RNase P is a ribozyme: The RNA component catalyzes tRNA maturation in vitro without proteins. Remarkable features of RNase P include multiple turnovers in vivo and ability to process diverse substrates. Structures of the bacterial RNase P, including full-length RNAs and a ternary complex with substrate, have been determined by X-ray crystallography. However, crystal structures of free RNA are significantly different from the ternary complex, and the solution structure of the RNA is unknown. Here, we report solution structures of three phylogenetically distinct bacterial RNase P RNAs from Escherichia coli, Agrobacterium tumefaciens, and Bacillus stearothermophilus, determined using small angle X-ray scattering (SAXS) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis. A combination of homology modeling, normal mode analysis, and molecular dynamics was used to refine the structural models against the empirical data of these RNAs in solution under the high ionic strength required for catalytic activity.

Citing Articles

Determining structures of RNA conformers using AFM and deep neural networks.

Degenhardt M, Degenhardt H, Bhandari Y, Lee Y, Ding J, Yu P Nature. 2024; 637(8048):1234-1243.

PMID: 39695231 PMC: 11779638. DOI: 10.1038/s41586-024-07559-x.


The conformational space of RNase P RNA in solution.

Lee Y, Degenhardt M, Skeparnias I, Degenhardt H, Bhandari Y, Yu P Nature. 2024; 637(8048):1244-1251.

PMID: 39695229 PMC: 11779636. DOI: 10.1038/s41586-024-08336-6.


Causes, functions, and therapeutic possibilities of RNA secondary structure ensembles and alternative states.

Bose R, Saleem I, Mustoe A Cell Chem Biol. 2024; 31(1):17-35.

PMID: 38199037 PMC: 10842484. DOI: 10.1016/j.chembiol.2023.12.010.


Determining structures of individual RNA conformers using atomic force microscopy images and deep neural networks.

Degenhardt M, Degenhardt H, Bhandari Y, Lee Y, Ding J, Heinz W Res Sq. 2023; .

PMID: 37425706 PMC: 10327248. DOI: 10.21203/rs.3.rs-2798658/v1.


Mutation signature filtering enables high-fidelity RNA structure probing at all four nucleobases with DMS.

Mitchell D, Cotter J, Saleem I, Mustoe A Nucleic Acids Res. 2023; 51(16):8744-8757.

PMID: 37334863 PMC: 10484685. DOI: 10.1093/nar/gkad522.


References
1.
Tamura M, Hendrix D, Klosterman P, Schimmelman N, Brenner S, Holbrook S . SCOR: Structural Classification of RNA, version 2.0. Nucleic Acids Res. 2003; 32(Database issue):D182-4. PMC: 308814. DOI: 10.1093/nar/gkh080. View

2.
Matsumoto A, Ishida H . Global conformational changes of ribosome observed by normal mode fitting for 3D Cryo-EM structures. Structure. 2009; 17(12):1605-1613. DOI: 10.1016/j.str.2009.09.017. View

3.
Siegel R, Banta A, Haas E, Brown J, Pace N . Mycoplasma fermentans simplifies our view of the catalytic core of ribonuclease P RNA. RNA. 1996; 2(5):452-62. PMC: 1369386. View

4.
Delarue M, Sanejouand Y . Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model. J Mol Biol. 2002; 320(5):1011-24. DOI: 10.1016/s0022-2836(02)00562-4. View

5.
Krasilnikov A, Xiao Y, Pan T, Mondragon A . Basis for structural diversity in homologous RNAs. Science. 2004; 306(5693):104-7. DOI: 10.1126/science.1101489. View