» Articles » PMID: 21467582

Unlocking the Barley Genome by Chromosomal and Comparative Genomics

Abstract

We used a novel approach that incorporated chromosome sorting, next-generation sequencing, array hybridization, and systematic exploitation of conserved synteny with model grasses to assign ~86% of the estimated ~32,000 barley (Hordeum vulgare) genes to individual chromosome arms. Using a series of bioinformatically constructed genome zippers that integrate gene indices of rice (Oryza sativa), sorghum (Sorghum bicolor), and Brachypodium distachyon in a conserved synteny model, we were able to assemble 21,766 barley genes in a putative linear order. We show that the barley (H) genome displays a mosaic of structural similarity to hexaploid bread wheat (Triticum aestivum) A, B, and D subgenomes and that orthologous genes in different grasses exhibit signatures of positive selection in different lineages. We present an ordered, information-rich scaffold of the barley genome that provides a valuable and robust framework for the development of novel strategies in cereal breeding.

Citing Articles

Mating systems and recombination landscape strongly shape genetic diversity and selection in wheat relatives.

Burgarella C, Bremaud M, Von Hirschheydt G, Viader V, Ardisson M, Santoni S Evol Lett. 2024; 8(6):866-880.

PMID: 39677571 PMC: 11637685. DOI: 10.1093/evlett/qrae039.


Comprehensive identification of GASA genes in sunflower and expression profiling in response to drought.

Asad Ullah M, Ahmed M, AlHusnain L, Zia M, AlKahtani M, Attia K BMC Genomics. 2024; 25(1):954.

PMID: 39402437 PMC: 11472593. DOI: 10.1186/s12864-024-10860-8.


Transcriptional changes during crown-root development and emergence in barley (Hordeum vulgare L.).

Nguyen D, Zavadil Kokas F, Gonin M, Lavarenne J, Colin M, Gantet P BMC Plant Biol. 2024; 24(1):438.

PMID: 38778283 PMC: 11110440. DOI: 10.1186/s12870-024-05160-y.


Are cereal grasses a single genetic system?.

Mascher M, Marone M, Schreiber M, Stein N Nat Plants. 2024; 10(5):719-731.

PMID: 38605239 PMC: 7616769. DOI: 10.1038/s41477-024-01674-3.


High-quality wild barley genome assemblies and annotation with Nanopore long reads and Hi-C sequencing data.

Pan R, Hu H, Xiao Y, Xu L, Xu Y, Ouyang K Sci Data. 2023; 10(1):535.

PMID: 37563167 PMC: 10415357. DOI: 10.1038/s41597-023-02434-2.


References
1.
Thiel T, Graner A, Waugh R, Grosse I, Close T, Stein N . Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evol Biol. 2009; 9:209. PMC: 2746218. DOI: 10.1186/1471-2148-9-209. View

2.
Paterson A, Bowers J, Bruggmann R, Dubchak I, Grimwood J, Gundlach H . The Sorghum bicolor genome and the diversification of grasses. Nature. 2009; 457(7229):551-6. DOI: 10.1038/nature07723. View

3.
Neumann P, Pozarkova D, Vrana J, Dolezel J, Macas J . Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosome Res. 2002; 10(1):63-71. DOI: 10.1023/a:1014274328269. View

4.
Suchankova P, Kubalakova M, Kovarova P, Bartos J, cihalikova J, Molnar-Lang M . Dissection of the nuclear genome of barley by chromosome flow sorting. Theor Appl Genet. 2006; 113(4):651-9. DOI: 10.1007/s00122-006-0329-8. View

5.
Germain H, Chevalier E, Caron S, Matton D . Characterization of five RALF-like genes from Solanum chacoense provides support for a developmental role in plants. Planta. 2004; 220(3):447-54. DOI: 10.1007/s00425-004-1352-0. View