Klein R, Brehm J, Wissig J, Heermann R, Unden G
BMC Microbiol. 2023; 23(1):236.
PMID: 37633907
PMC: 10463352.
DOI: 10.1186/s12866-023-02989-5.
Champaneria A, Iyer B, Rajkumar S
Appl Microbiol Biotechnol. 2022; 106(11):4251-4268.
PMID: 35661910
DOI: 10.1007/s00253-022-11997-w.
Franzino T, Boubakri H, Cernava T, Abrouk D, Achouak W, Reverchon S
Plant Commun. 2022; 3(2):100272.
PMID: 35529946
PMC: 9073323.
DOI: 10.1016/j.xplc.2021.100272.
diCenzo G, Muhammed Z, Osteras M, OBrien S, Finan T
Genetics. 2017; 207(3):961-974.
PMID: 28851745
PMC: 5676232.
DOI: 10.1534/genetics.117.300212.
Vega-Baray B, Domenzain C, Rivera A, Alfaro-Lopez R, Gomez-Cesar E, Poggio S
J Bacteriol. 2014; 197(5):833-47.
PMID: 25512309
PMC: 4325097.
DOI: 10.1128/JB.02429-14.
Is the lactose-utilization ability ofRhizobium ofSesbania procumbens a vestigeal function?.
Shenbagarathai R, Shanmugasundaram S
World J Microbiol Biotechnol. 2014; 8(6):598-600.
PMID: 24425607
DOI: 10.1007/BF01238796.
Characterization of a two-component regulatory system that regulates succinate-mediated catabolite repression in Sinorhizobium meliloti.
Garcia P, Bringhurst R, Pinedo C, Gage D
J Bacteriol. 2010; 192(21):5725-35.
PMID: 20817764
PMC: 2953702.
DOI: 10.1128/JB.00629-10.
Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis.
Kleijn R, Buescher J, Le Chat L, Jules M, Aymerich S, Sauer U
J Biol Chem. 2009; 285(3):1587-96.
PMID: 19917605
PMC: 2804316.
DOI: 10.1074/jbc.M109.061747.
HPrK regulates succinate-mediated catabolite repression in the gram-negative symbiont Sinorhizobium meliloti.
Pinedo C, Gage D
J Bacteriol. 2008; 191(1):298-309.
PMID: 18931135
PMC: 2612420.
DOI: 10.1128/JB.01115-08.
Sinorhizobium meliloti mutants lacking phosphotransferase system enzyme HPr or EIIA are altered in diverse processes, including carbon metabolism, cobalt requirements, and succinoglycan production.
Pinedo C, Bringhurst R, Gage D
J Bacteriol. 2008; 190(8):2947-56.
PMID: 18281401
PMC: 2293241.
DOI: 10.1128/JB.01917-07.
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.
Deutscher J, Francke C, Postma P
Microbiol Mol Biol Rev. 2006; 70(4):939-1031.
PMID: 17158705
PMC: 1698508.
DOI: 10.1128/MMBR.00024-06.
Gene tandem-mediated selection of coliphage lambda-receptive Agrobacterium, Pseudomonas, and Rhizobium strains.
Ludwig R
Proc Natl Acad Sci U S A. 1987; 84(10):3334-8.
PMID: 16593836
PMC: 304864.
DOI: 10.1073/pnas.84.10.3334.
Diauxic Growth in Rice Suspension Cells Grown on Mixed Carbon Sources of Acetate and Glucose.
Lee T, Lee W
Plant Physiol. 1996; 110(2):465-470.
PMID: 12226198
PMC: 157741.
DOI: 10.1104/pp.110.2.465.
Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti.
Bringhurst R, Gage D
J Bacteriol. 2002; 184(19):5385-92.
PMID: 12218025
PMC: 135350.
DOI: 10.1128/JB.184.19.5385-5392.2002.
The Rhizobium etli cyaC product: characterization of a novel adenylate cyclase class.
Tellez-Sosa J, Soberon N, Vega-Segura A, Cevallos M
J Bacteriol. 2002; 184(13):3560-8.
PMID: 12057950
PMC: 135151.
DOI: 10.1128/JB.184.13.3560-3568.2002.
Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system.
Lambert A, Osteras M, Mandon K, Poggi M, Le Rudulier D
J Bacteriol. 2001; 183(16):4709-17.
PMID: 11466273
PMC: 99524.
DOI: 10.1128/JB.183.16.4709-4717.2001.
Azospirillum brasilense locus coding for phosphoenolpyruvate:fructose phosphotransferase system and global regulation of carbohydrate metabolism.
Chattopadhyay S, Mukherjee A, Ghosh S
J Bacteriol. 1993; 175(10):3240-3.
PMID: 8491742
PMC: 204653.
DOI: 10.1128/jb.175.10.3240-3243.1993.
Molecular cloning and sequencing of an operon, carRS of Azospirillum brasilense, that codes for a novel two-component regulatory system: demonstration of a positive regulatory role of carR for global control of carbohydrate catabolism.
Chattopadhyay S, Mukherjee A, Ghosh S
J Bacteriol. 1994; 176(24):7484-90.
PMID: 8002571
PMC: 197204.
DOI: 10.1128/jb.176.24.7484-7490.1994.
Mechanism of regulation of glucose transport in Rhizobium leguminosarum.
de Vries G, Van Brussel A, QUISPEL A
J Bacteriol. 1982; 149(3):872-9.
PMID: 7061388
PMC: 216473.
DOI: 10.1128/jb.149.3.872-879.1982.
Lactose inhibits the growth of Rhizobium meliloti cells that contain an actively expressed Escherichia coli lactose operon.
Timblin C, Kahn M
J Bacteriol. 1984; 158(3):1204-7.
PMID: 6427192
PMC: 215578.
DOI: 10.1128/jb.158.3.1204-1207.1984.