» Articles » PMID: 21425410

Pramel7 Mediates LIF/STAT3-dependent Self-renewal in Embryonic Stem Cells

Overview
Journal Stem Cells
Date 2011 Mar 23
PMID 21425410
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

A unique and complex signaling network allows ESCs to undergo extended proliferation in vitro, while maintaining their capacity for multilineage differentiation. Genuine ESC identity can only be maintained when both self-renewal and suppression of differentiation are active and balanced. Here, we identify Pramel7 (preferentially expressed antigen in melanoma-like 7) as a novel factor crucial for maintenance of pluripotency and leukemia inhibitory factor (LIF)-mediated self-renewal in ESCs. In vivo, Pramel7 expression was exclusively found in the pluripotent pools of cells, namely, the central part of the morula and the inner cell mass of the blastocyst. Ablation of Pramel7 induced ESC differentiation, whereas its overexpression was sufficient to support long-term self-renewal in the absence of exogenous LIF. Furthermore, Pramel7 overexpression suppressed differentiation in ESCs in vitro and in vivo. This process was reversible, as on transgene excision cells reverted to a LIF-dependent state and regained their capacity to participate in the formation of chimeric mice. Molecularly, LIF directly controls Pramel7 expression, involving both STAT3-dependent transcriptional regulation and PI3K-dependent phosphorylation of glycogen synthase kinase 3β. Pramel7 expression in turn confers constitutive self-renewal and prevents differentiation through inactivation of extracellular signal-regulated kinase phosphorylation. Accordingly, knockdown of Pramel7 promotes ESC differentiation in presence of LIF and even on forced STAT3-activation. Thus, Pramel7 represents a central and essential factor in the signaling network regulating pluripotency and self-renewal in ESCs.

Citing Articles

Targeting DTX2/UFD1-mediated FTO degradation to regulate antitumor immunity.

Cui Y, Wei J, Fan H, Li W, Zhao L, Wilkinson E Proc Natl Acad Sci U S A. 2024; 121(51):e2407910121.

PMID: 39661064 PMC: 11665913. DOI: 10.1073/pnas.2407910121.


Synergistic enhancement of the mouse Pramex1 and Pramel1 in repressing retinoic acid (RA) signaling during gametogenesis.

Yang M, Diaz F, Krause A, Lei Y, Liu W Cell Biosci. 2024; 14(1):28.

PMID: 38395975 PMC: 10893636. DOI: 10.1186/s13578-024-01212-w.


PRAMEL7 and CUL2 decrease NuRD stability to establish ground-state pluripotency.

Rupasinghe M, Bersaglieri C, Leslie Pedrioli D, Pedrioli P, Panatta M, Hottiger M EMBO Rep. 2024; 25(3):1453-1468.

PMID: 38332149 PMC: 10933316. DOI: 10.1038/s44319-024-00083-z.


BET proteins are essential for the specification and maintenance of the epiblast lineage in mouse preimplantation embryos.

Tsume-Kajioka M, Kimura-Yoshida C, Mochida K, Ueda Y, Matsuo I BMC Biol. 2022; 20(1):64.

PMID: 35264162 PMC: 8905768. DOI: 10.1186/s12915-022-01251-0.


Subcellular localization of the mouse PRAMEL1 and PRAMEX1 reveals multifaceted roles in the nucleus and cytoplasm of germ cells during spermatogenesis.

Liu W, Lu C, Mistry B Cell Biosci. 2021; 11(1):102.

PMID: 34074333 PMC: 8170798. DOI: 10.1186/s13578-021-00612-6.