» Articles » PMID: 21411663

GABAB Receptor Modulation of Voltage-sensitive Calcium Channels in Spines and Dendrites

Overview
Journal J Neurosci
Specialty Neurology
Date 2011 Mar 18
PMID 21411663
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Although primarily studied at the cell body, GABA(B) receptors (GABA(B)Rs) are abundant at spines and dendrites of cortical pyramidal neurons, where they are positioned to influence both synaptic and dendritic function. Here, we examine how GABA(B)Rs modulate calcium (Ca) signals evoked by action potentials (APs) in spines and dendrites of layer 2/3 pyramidal neurons in mouse prefrontal cortex. We first use two-photon microscopy to show that GABA(B)Rs inhibit AP Ca signals throughout the entire dendritic arbor of these neurons. We then use local pharmacology and GABA uncaging to show that dendritic GABA(B)Rs also decrease the input resistance, shorten the AP afterdepolarization, and generate inhibitory postsynaptic potentials. However, we find that these electrophysiological effects recorded at the cell body do not correlate with the inhibition of AP Ca signals measured in spines and dendrites. Instead, we use voltage-clamp recordings to show that GABA(B)Rs directly inhibit several subtypes of voltage-sensitive calcium channels (VSCCs) in both spines and dendrites. Given the importance of VSCC-mediated Ca signals for neuronal function, our results have implications for the functional role of dendritic GABA(B)Rs in the prefrontal cortex and throughout the brain.

Citing Articles

Nanoarchitecture of Ca2.1 channels and GABA receptors in the mouse hippocampus: Impact of APP/PS1 pathology.

Martin-Belmonte A, Aguado C, Alfaro-Ruiz R, Kulik A, de la Ossa L, Moreno-Martinez A Brain Pathol. 2024; 35(2):e13279.

PMID: 38887180 PMC: 11835447. DOI: 10.1111/bpa.13279.


GABA receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles.

Koppensteiner P, Bhandari P, Onal C, Borges-Merjane C, Le Monnier E, Roy U Proc Natl Acad Sci U S A. 2024; 121(8):e2301449121.

PMID: 38346189 PMC: 10895368. DOI: 10.1073/pnas.2301449121.


Physical and functional convergence of the autism risk genes Scn2a and Ank2 in neocortical pyramidal cell dendrites.

Nelson A, Catalfio A, Gupta J, Min L, Caballero-Floran R, Dean K Neuron. 2024; 112(7):1133-1149.e6.

PMID: 38290518 PMC: 11097922. DOI: 10.1016/j.neuron.2024.01.003.


ERK1/2-Dependent Phosphorylation of GABA(S867/T872), Controlled by CaMKIIβ, Is Required for GABA Receptor Degradation under Physiological and Pathological Conditions.

Bhat M, Grampp T, Benke D Int J Mol Sci. 2023; 24(17).

PMID: 37686242 PMC: 10488028. DOI: 10.3390/ijms241713436.


Adaptive control of synaptic plasticity integrates micro- and macroscopic network function.

Scott D, Frank M Neuropsychopharmacology. 2022; 48(1):121-144.

PMID: 36038780 PMC: 9700774. DOI: 10.1038/s41386-022-01374-6.


References
1.
Pfrieger F, Gottmann K, Lux H . Kinetics of GABAB receptor-mediated inhibition of calcium currents and excitatory synaptic transmission in hippocampal neurons in vitro. Neuron. 1994; 12(1):97-107. DOI: 10.1016/0896-6273(94)90155-4. View

2.
Waters J, Larkum M, Sakmann B, Helmchen F . Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J Neurosci. 2003; 23(24):8558-67. PMC: 6740370. View

3.
Gordon U, Polsky A, Schiller J . Plasticity compartments in basal dendrites of neocortical pyramidal neurons. J Neurosci. 2006; 26(49):12717-26. PMC: 6674852. DOI: 10.1523/JNEUROSCI.3502-06.2006. View

4.
Holz 4th G, Rane S, Dunlap K . GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature. 1986; 319(6055):670-2. PMC: 2926796. DOI: 10.1038/319670a0. View

5.
Spruston N . Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci. 2008; 9(3):206-21. DOI: 10.1038/nrn2286. View