» Articles » PMID: 21369972

An Inward Proton Transport Using Anabaena Sensory Rhodopsin

Overview
Journal J Microbiol
Specialty Microbiology
Date 2011 Mar 4
PMID 21369972
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

ATP is synthesized by an enzyme that utilizes proton motive force and thus nature creates various proton pumps. The best understood proton pump is bacteriorhodopsin (BR), an outward-directed light-driven proton pump in Halobacterium salinarum. Many archaeal and eubacterial rhodopsins are now known to show similar proton transport activity. Proton pumps must have a specific mechanism to exclude transport in the reverse direction to maintain a proton gradient, and in the case of BR, a highly hydrophobic cytoplasmic domain may constitute such machinery. Although an inward proton pump has neither been created naturally nor artificially, we recently reported that an inward-directed proton transport can be engineered from a bacterial rhodopsin by a single amino acid replacement Anabaena sensory rhodopsin (ASR) is a photochromic sensor in freshwater cyanobacteria, possessing little proton transport activity. When we replace Asp217 at the cytoplasmic domain (distance ∼ 15 Å from the retinal chromophore) to Glu, ASR is converted into an inward proton transport, driven by absorption of a single photon. FTIR spectra clearly show an increased proton affinity for Glu217, which presumably controls the unusual directionality opposite to normal proton pumps.

Citing Articles

Ion-transporting mechanism in microbial rhodopsins: Mini-review relating to the session 5 at the 19th International Conference on Retinal Proteins.

Furutani Y, Yang C Biophys Physicobiol. 2024; 20(Supplemental):e201005.

PMID: 38362333 PMC: 10865854. DOI: 10.2142/biophysico.bppb-v20.s005.


Microbial Rhodopsins.

Gordeliy V, Kovalev K, Bamberg E, Rodriguez-Valera F, Zinovev E, Zabelskii D Methods Mol Biol. 2022; 2501:1-52.

PMID: 35857221 DOI: 10.1007/978-1-0716-2329-9_1.


Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins.

Inoue K Adv Exp Med Biol. 2021; 1293:89-126.

PMID: 33398809 DOI: 10.1007/978-981-15-8763-4_6.


Bioinformatic analysis of the distribution of inorganic carbon transporters and prospective targets for bioengineering to increase Ci uptake by cyanobacteria.

Gaudana S, Zarzycki J, Moparthi V, Kerfeld C Photosynth Res. 2014; 126(1):99-109.

PMID: 25399051 DOI: 10.1007/s11120-014-0059-8.


Chimeric proton-pumping rhodopsins containing the cytoplasmic loop of bovine rhodopsin.

Sasaki K, Yamashita T, Yoshida K, Inoue K, Shichida Y, Kandori H PLoS One. 2014; 9(3):e91323.

PMID: 24621599 PMC: 3951393. DOI: 10.1371/journal.pone.0091323.


References
1.
Jung K, Trivedi V, Spudich J . Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol. 2003; 47(6):1513-22. DOI: 10.1046/j.1365-2958.2003.03395.x. View

2.
Mogi T, Stern L, Marti T, Chao B, Khorana H . Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. Proc Natl Acad Sci U S A. 1988; 85(12):4148-52. PMC: 280383. DOI: 10.1073/pnas.85.12.4148. View

3.
Furutani Y, Kawanabe A, Jung K, Kandori H . FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Biochemistry. 2005; 44(37):12287-96. DOI: 10.1021/bi050841o. View

4.
Bogomolni R, Stoeckenius W, Szundi I, Perozo E, Olson K, Spudich J . Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I. Proc Natl Acad Sci U S A. 1994; 91(21):10188-92. PMC: 44983. DOI: 10.1073/pnas.91.21.10188. View

5.
Zhang F, Aravanis A, Adamantidis A, De Lecea L, Deisseroth K . Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci. 2007; 8(8):577-81. DOI: 10.1038/nrn2192. View