» Articles » PMID: 15459346

Anabaena Sensory Rhodopsin: a Photochromic Color Sensor at 2.0 A

Overview
Journal Science
Specialty Science
Date 2004 Oct 2
PMID 15459346
Citations 73
Authors
Affiliations
Soon will be listed here.
Abstract

Microbial sensory rhodopsins are a family of membrane-embedded photoreceptors in prokaryotic and eukaryotic organisms. Structures of archaeal rhodopsins, which function as light-driven ion pumps or photosensors, have been reported. We present the structure of a eubacterial rhodopsin, which differs from those of previously characterized archaeal rhodopsins in its chromophore and cytoplasmic-side portions. Anabaena sensory rhodopsin exhibits light-induced interconversion between stable 13-cis and all-trans states of the retinylidene protein. The ratio of its cis and trans chromophore forms depends on the wavelength of illumination, thus providing a mechanism for a single protein to signal the color of light, for example, to regulate color-sensitive processes such as chromatic adaptation in photosynthesis. Its cytoplasmic half channel, highly hydrophobic in the archaeal rhodopsins, contains numerous hydrophilic residues networked by water molecules, providing a connection from the photoactive site to the cytoplasmic surface believed to interact with the receptor's soluble 14-kilodalton transducer.

Citing Articles

Responding to light signals: a comprehensive update on photomorphogenesis in cyanobacteria.

Gupta A, Pandey P, Gupta R, Tiwari S, Singh S Physiol Mol Biol Plants. 2024; 29(12):1915-1930.

PMID: 38222287 PMC: 10784256. DOI: 10.1007/s12298-023-01386-6.


A Proteorhodopsin-Related Photosensor Expands the Repertoire of Structural Motifs Employed by Sensory Rhodopsins.

Saliminasab M, Yamazaki Y, Palmateer A, Harris A, Schubert L, Langner P J Phys Chem B. 2023; 127(37):7872-7886.

PMID: 37694950 PMC: 10519204. DOI: 10.1021/acs.jpcb.3c04032.


Mechanisms of inward transmembrane proton translocation.

Kovalev K, Tsybrov F, Alekseev A, Shevchenko V, Soloviov D, Siletsky S Nat Struct Mol Biol. 2023; 30(7):970-979.

PMID: 37386213 DOI: 10.1038/s41594-023-01020-9.


Mirror proteorhodopsins.

Okhrimenko I, Kovalev K, Petrovskaya L, Ilyinsky N, Alekseev A, Marin E Commun Chem. 2023; 6(1):88.

PMID: 37130895 PMC: 10154332. DOI: 10.1038/s42004-023-00884-8.


Bidirectional Photochemistry of Antarctic Microbial Rhodopsin: Emerging Trend of Ballistic Photoisomerization from the 13- Resting State.

Malakar P, Das I, Bhattacharya S, Harris A, Sheves M, Brown L J Phys Chem Lett. 2022; 13(34):8134-8140.

PMID: 36000820 PMC: 9442786. DOI: 10.1021/acs.jpclett.2c01974.


References
1.
Singh B, Chauhan V, Singh S, Bisen P . Isolation and partial characterization of Het- Fix- mutant strain of the diazotrophic cyanobacterium Anabaena variabilis showing chromatic adaptation. Curr Microbiol. 2001; 43(4):265-70. DOI: 10.1007/s002840010299. View

2.
MacColl . Cyanobacterial phycobilisomes . J Struct Biol. 1999; 124(2-3):311-34. DOI: 10.1006/jsbi.1998.4062. View

3.
Luecke H, Richter H, Lanyi J . Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science. 1998; 280(5371):1934-7. DOI: 10.1126/science.280.5371.1934. View

4.
Cartailler J, Luecke H . Structural and functional characterization of pi bulges and other short intrahelical deformations. Structure. 2004; 12(1):133-44. DOI: 10.1016/j.str.2003.12.001. View

5.
Royant A, Nollert P, Edman K, Neutze R, Landau E, Pebay-Peyroula E . X-ray structure of sensory rhodopsin II at 2.1-A resolution. Proc Natl Acad Sci U S A. 2001; 98(18):10131-6. PMC: 56927. DOI: 10.1073/pnas.181203898. View