» Articles » PMID: 21364557

Optical Virtual Imaging at 50 Nm Lateral Resolution with a White-light Nanoscope

Overview
Journal Nat Commun
Specialty Biology
Date 2011 Mar 3
PMID 21364557
Citations 82
Authors
Affiliations
Soon will be listed here.
Abstract

The imaging resolution of a conventional optical microscope is limited by diffraction to ~200 nm in the visible spectrum. Efforts to overcome such limits have stimulated the development of optical nanoscopes using metamaterial superlenses, nanoscale solid immersion lenses and molecular fluorescence microscopy. These techniques either require an illuminating laser beam to resolve to 70 nm in the visible spectrum or have limited imaging resolution above 100 nm for a white-light source. Here we report a new 50-nm-resolution nanoscope that uses optically transparent microspheres (for example, SiO₂, with 2 μm<diameter<9 μm) as far-field superlenses (FSL) to overcome the white-light diffraction limit. The microsphere nanoscope operates in both transmission and reflection modes, and generates magnified virtual images with a magnification up to ×8. It may provide new opportunities to image viruses and biomolecules in real time.

Citing Articles

Superresolution based on coherent thermal radiation with selective information.

Huang D, Chang C Discov Nano. 2025; 20(1):34.

PMID: 39945957 PMC: 11825967. DOI: 10.1186/s11671-025-04209-7.


Nanophotonic inspection of deep-subwavelength integrated optoelectronic chips.

Che Y, Zhang T, Liu X, Hu D, Song S, Cai Y Sci Adv. 2025; 11(4):eadr8427.

PMID: 39854467 PMC: 11759039. DOI: 10.1126/sciadv.adr8427.


Near-Field Nano-Focusing and Nano-Imaging of Dielectric Microparticle Lenses.

Ling J, Wang Y, Guo J, Liu X, Wang X Nanomaterials (Basel). 2024; 14(23).

PMID: 39683362 PMC: 11643757. DOI: 10.3390/nano14231974.


Hysteresis and balance of backaction force on dielectric particles photothermally mediated by photonic nanojet.

Ren Y, Yip G, Zhou L, Qiu C, Shi J, Zhou Y Nanophotonics. 2024; 11(18):4231-4244.

PMID: 39634538 PMC: 11501579. DOI: 10.1515/nanoph-2022-0312.


Reflectance mapping with microsphere-assisted white light interference nanoscopy.

Marbach S, Claveau R, Montgomery P, Flury M Sci Rep. 2024; 14(1):26974.

PMID: 39505947 PMC: 11541738. DOI: 10.1038/s41598-024-77162-7.


References
1.
Chen Z, Taflove A, Backman V . Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt Express. 2009; 12(7):1214-20. DOI: 10.1364/opex.12.001214. View

2.
Liu Z, Lee H, Xiong Y, Sun C, Zhang X . Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science. 2007; 315(5819):1686. DOI: 10.1126/science.1137368. View

3.
Zhang X, Liu Z . Superlenses to overcome the diffraction limit. Nat Mater. 2008; 7(6):435-41. DOI: 10.1038/nmat2141. View

4.
Mason D, Jouravlev M, Kim K . Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses. Opt Lett. 2010; 35(12):2007-9. DOI: 10.1364/OL.35.002007. View

5.
Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H . Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat Commun. 2011; 1:143. DOI: 10.1038/ncomms1148. View