» Articles » PMID: 21321085

Regulation of MTORC1 Complex Assembly and Signaling by GRp58/ERp57

Overview
Journal Mol Cell Biol
Specialty Cell Biology
Date 2011 Feb 16
PMID 21321085
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

The mammalian target of rapamycin (mTOR) regulates cell growth and survival via two different multiprotein complexes, mTORC1 and mTORC2. The assembly of these serine-threonine kinase multiprotein complexes occurs via poorly understood molecular mechanisms. Here, we demonstrate that GRp58/ERp57 regulates the existence and activity of mTORC1. Endogenous mTOR interacts with GRp58/ERp57 in different mammalian cells. In vitro, recombinant GRp58/ERp57 preferentially interacts with mTORC1. GRp58/ERp57 knockdown reduces mTORC1 levels and phosphorylation of 4E-BP1 and p70(S6K) in response to insulin. In contrast, GRp58/ERp57 overexpression increases mTORC1 levels and activity. A redox-sensitive mechanism that depends on GRp58/ERp57 expression activates mTORC1. Although GRp58/ERp57 is known as an endoplasmic reticulum (ER) resident, we demonstrate its presence at the cytosol, together with mTOR, Raptor, and Rictor as well as a pool of these proteins associated to the ER. In addition, the presence of GRp58/ERp57 at the ER decreases in response to insulin or leucine. Interestingly, a fraction of p70(S6K), but not 4E-BP1, is associated to the ER and phosphorylated in response to serum, insulin, or leucine. Altogether, our results suggest that GRp58/ERp57 is involved in the assembly of mTORC1 and positively regulates mTORC1 signaling at the cytosol and the cytosolic side of the ER.

Citing Articles

Single-cell analysis identified PDIA3 as regulator of malignant characteristics and macrophage function in human cancers.

Wu W, Peng G, Wang K, Yang Y, Liu Z, Xiao G Funct Integr Genomics. 2024; 24(4):136.

PMID: 39138692 DOI: 10.1007/s10142-024-01416-w.


PDIA3 orchestrates effector T cell program by serving as a chaperone to facilitate the non-canonical nuclear import of STAT1 and PKM2.

Yang C, Wang F, Luo J, Rong S, Lu W, Chen Q Mol Ther. 2024; 32(8):2778-2797.

PMID: 38822524 PMC: 11405166. DOI: 10.1016/j.ymthe.2024.05.038.


The role of PDIA3 in oral squamous cell carcinoma and its value as A diagnostic and prognostic biomarker.

Wang L, Wang X, Zhang J, Duan J, Tang C, Zhang L Heliyon. 2024; 9(12):e22596.

PMID: 38213579 PMC: 10782160. DOI: 10.1016/j.heliyon.2023.e22596.


Targeting thiol isomerase activity with zafirlukast to treat ovarian cancer from the bench to clinic.

Gelzinis J, Szahaj M, Bekendam R, Wurl S, Pantos M, Verbetsky C FASEB J. 2023; 37(5):e22914.

PMID: 37043381 PMC: 10360043. DOI: 10.1096/fj.202201952R.


PDIA3 Expression Is Altered in the Limbic Brain Regions of Triple-Transgenic Mouse Model of Alzheimer's Disease.

Cassano T, Giamogante F, Calcagnini S, Romano A, Lavecchia A, Inglese F Int J Mol Sci. 2023; 24(3).

PMID: 36769334 PMC: 9918299. DOI: 10.3390/ijms24033005.


References
1.
Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung S . SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006; 127(1):125-37. DOI: 10.1016/j.cell.2006.08.033. View

2.
Wang X, Proud C . The mTOR pathway in the control of protein synthesis. Physiology (Bethesda). 2006; 21:362-9. DOI: 10.1152/physiol.00024.2006. View

3.
Sarbassov D, Sabatini D . Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex. J Biol Chem. 2005; 280(47):39505-9. DOI: 10.1074/jbc.M506096200. View

4.
Guertin D, Stevens D, Thoreen C, Burds A, Kalaany N, Moffat J . Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 2006; 11(6):859-71. DOI: 10.1016/j.devcel.2006.10.007. View

5.
Li W, Petrimpol M, Molle K, Hall M, Battegay E, Humar R . Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2. Circ Res. 2006; 100(1):79-87. DOI: 10.1161/01.RES.0000253094.03023.3f. View