» Articles » PMID: 21317284

Mapping of the SecA·SecY and SecA·SecG Interfaces by Site-directed in Vivo Photocross-linking

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2011 Feb 15
PMID 21317284
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

The two major components of the Eubacteria Sec-dependent protein translocation system are the heterotrimeric channel-forming component SecYEG and its binding partner, the SecA ATPase nanomotor. Once bound to SecYEG, the preprotein substrate, and ATP, SecA undergoes ATP-hydrolytic cycles that drive the stepwise translocation of proteins. Although a previous site-directed in vivo photocross-linking study (Mori, H., and Ito, K. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 16159-16164) elucidated residues of SecY needed for interaction with SecA, no reciprocal study for SecA protein has been reported to date. In the present study we mapped residues of SecA that interact with SecY or SecG utilizing this approach. Our results show that distinct domains of SecA on two halves of the molecule interact with two corresponding SecY partners as well as with the central cytoplasmic domain of SecG. Our data support the in vivo relevance of the Thermotoga maritima SecA·SecYEG crystal structure that visualized SecYEG interaction for only one-half of SecA as well as previous studies indicating that SecA normally binds two molecules of SecYEG.

Citing Articles

mRNA targeting eliminates the need for the signal recognition particle during membrane protein insertion in bacteria.

Sarmah P, Shang W, Origi A, Licheva M, Kraft C, Ulbrich M Cell Rep. 2023; 42(3):112140.

PMID: 36842086 PMC: 10066597. DOI: 10.1016/j.celrep.2023.112140.


Förster Resonance Energy Transfer Mapping: A New Methodology to Elucidate Global Structural Features.

Northrop J, Oliver D, Mukerji I J Vis Exp. 2022; (181).

PMID: 35377367 PMC: 10639101. DOI: 10.3791/63433.


The Dynamic SecYEG Translocon.

Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch H Front Mol Biosci. 2021; 8:664241.

PMID: 33937339 PMC: 8082313. DOI: 10.3389/fmolb.2021.664241.


The Structure of SecA2 ATPase Exposes Regions Responsible for Differential Target Recognition of the SecA1 and SecA2-Dependent Systems.

Lindic N, Loboda J, Usenik A, Vidmar R, Turk D Int J Mol Sci. 2020; 21(17).

PMID: 32858965 PMC: 7503281. DOI: 10.3390/ijms21176153.


Molecular Mimicry of SecA and Signal Recognition Particle Binding to the Bacterial Ribosome.

Knupffer L, Fehrenbach C, Denks K, Erichsen V, Petriman N, Koch H mBio. 2019; 10(4).

PMID: 31409676 PMC: 6692507. DOI: 10.1128/mBio.01317-19.


References
1.
Cooper D, Smith V, Crane J, Roth H, Lilly A, Randall L . SecA, the motor of the secretion machine, binds diverse partners on one interactive surface. J Mol Biol. 2008; 382(1):74-87. PMC: 2633600. DOI: 10.1016/j.jmb.2008.06.049. View

2.
van der Wolk J, Fekkes P, Boorsma A, Huie J, Silhavy T, Driessen A . PrlA4 prevents the rejection of signal sequence defective preproteins by stabilizing the SecA-SecY interaction during the initiation of translocation. EMBO J. 1998; 17(13):3631-9. PMC: 1170699. DOI: 10.1093/emboj/17.13.3631. View

3.
Hanada M, Nishiyama K, Mizushima S, Tokuda H . Reconstitution of an efficient protein translocation machinery comprising SecA and the three membrane proteins, SecY, SecE, and SecG (p12). J Biol Chem. 1994; 269(38):23625-31. View

4.
Economou A, Wickner W . SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell. 1994; 78(5):835-43. DOI: 10.1016/s0092-8674(94)90582-7. View

5.
Nishiyama K, Suzuki T, Tokuda H . Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell. 1996; 85(1):71-81. DOI: 10.1016/s0092-8674(00)81083-1. View