» Articles » PMID: 21287594

Quantitative Cerebral Blood Flow in Dynamic Susceptibility Contrast MRI Using Total Cerebral Flow from Phase Contrast Magnetic Resonance Angiography

Overview
Journal Magn Reson Med
Publisher Wiley
Specialty Radiology
Date 2011 Feb 3
PMID 21287594
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Dynamic susceptibility contrast magnetic resonance imaging during bolus injection of gadolinium contrast agent is commonly used to investigate cerebral hemodynamics. The large majority of clinical applications of dynamic susceptibility contrast magnetic resonance imaging to date have reported relative cerebral blood flow values because of dependence of the result on the accuracy of determining the arterial input function, the robustness of the singular value decomposition algorithm, and others. We propose a calibration approach that directly measures the total (i.e., whole brain) cerebral blood flow in individual subjects using phase contrast magnetic resonance angiography. The method was applied to data from 11 patients with intracranial pathology. The sum of squares variance about the mean (uncorrected: white matter = 105.6, gray matter = 472.2; corrected: white matter = 34.1, gray matter = 99.8) after correction was significantly lower for white matter (P = 0.045) and for gray matter (P = 0.011). However, the mean gray and white matter cerebral blood flow in the contralateral hemisphere were not significantly altered by the correction. The proposed phase contrast magnetic resonance angiography calibration technique appears to be one of the most direct correction schemes available for dynamic susceptibility contrast magnetic resonance imaging cerebral blood flow values and can be performed rapidly, requiring only a few minutes of additional scan time.

Citing Articles

Comparison of ASL and DSC perfusion methods in the evaluation of response to treatment in patients with a history of treatment for malignant brain tumor.

Bayraktar E, Duygulu G, Cetinoglu Y, Gelal M, Apaydin M, Ellidokuz H BMC Med Imaging. 2024; 24(1):70.

PMID: 38519901 PMC: 10958956. DOI: 10.1186/s12880-024-01249-w.


Simultaneous Quantification of Anisotropic Microcirculation and Microstructure in Peripheral Nerve.

Merchant S, Yeoh S, Mahan M, Hsu E J Clin Med. 2022; 11(11).

PMID: 35683424 PMC: 9181650. DOI: 10.3390/jcm11113036.


Incorporating Blood Flow in Nerve Injury and Regeneration Assessment.

Yeoh S, Warner W, Merchant S, Hsu E, Agoston D, Mahan M Front Surg. 2022; 9:862478.

PMID: 35529911 PMC: 9069240. DOI: 10.3389/fsurg.2022.862478.


Non-Invasive Evaluation of Cerebral Microvasculature Using Pre-Clinical MRI: Principles, Advantages and Limitations.

Callewaert B, Jones E, Himmelreich U, Gsell W Diagnostics (Basel). 2021; 11(6).

PMID: 34064194 PMC: 8224283. DOI: 10.3390/diagnostics11060926.


Improved brain perfusion after electrical cardioversion of atrial fibrillation.

Gardarsdottir M, Sigurdsson S, Aspelund T, Gardarsdottir V, Forsberg L, Gudnason V Europace. 2019; 22(4):530-537.

PMID: 31860069 PMC: 7132536. DOI: 10.1093/europace/euz336.


References
1.
Calamante F, Thomas D, Pell G, Wiersma J, Turner R . Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab. 1999; 19(7):701-35. DOI: 10.1097/00004647-199907000-00001. View

2.
Paulson E, Schmainda K . Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology. 2008; 249(2):601-13. PMC: 2657863. DOI: 10.1148/radiol.2492071659. View

3.
van der Geest R, Niezen R, van der Wall E, de Roos A, Reiber J . Automated measurement of volume flow in the ascending aorta using MR velocity maps: evaluation of inter- and intraobserver variability in healthy volunteers. J Comput Assist Tomogr. 1998; 22(6):904-11. DOI: 10.1097/00004728-199811000-00013. View

4.
Sakaie K, Shin W, Curtin K, McCarthy R, Cashen T, Carroll T . Method for improving the accuracy of quantitative cerebral perfusion imaging. J Magn Reson Imaging. 2005; 21(5):512-9. DOI: 10.1002/jmri.20305. View

5.
Ostergaard L, Weisskoff R, Chesler D, Gyldensted C, Rosen B . High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med. 1996; 36(5):715-25. DOI: 10.1002/mrm.1910360510. View