» Articles » PMID: 21246256

Uniform Isotope Labeling of a Eukaryotic Seven-transmembrane Helical Protein in Yeast Enables High-resolution Solid-state NMR Studies in the Lipid Environment

Overview
Journal J Biomol NMR
Publisher Springer
Date 2011 Jan 20
PMID 21246256
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties with achieving proper folding, membrane insertion, and native-like post-translational modifications frequently disqualify bacterial expression systems. On the other hand, eukaryotic cell cultures can be prohibitively expensive. One of the viable alternatives, successfully used for producing proteins for solution NMR studies, is yeast expression systems, particularly Pichia pastoris. We report on successful implementation and optimization of isotope labeling protocols, previously used for soluble secreted proteins, to produce homogeneous samples of a eukaryotic seven-transmembrane helical protein, rhodopsin from Leptosphaeria maculans. Even in shake-flask cultures, yields exceeded 5 mg of purified uniformly (13)C,(15)N-labeled protein per liter of culture. The protein was stable (at least several weeks at 5°C) and functionally active upon reconstitution into lipid membranes at high protein-to-lipid ratio required for solid-state NMR. The samples gave high-resolution (13)C and (15)N solid-state magic angle spinning NMR spectra, amenable to a detailed structural analysis. We believe that similar protocols can be adopted for challenging mammalian targets, which often resist characterization by other structural methods.

Citing Articles

Solid-State NMR Spectroscopy on Microbial Rhodopsins.

Kriebel C, Becker-Baldus J, Glaubitz C Methods Mol Biol. 2022; 2501:181-206.

PMID: 35857229 DOI: 10.1007/978-1-0716-2329-9_9.


Production and Preparation of Isotopically Labeled Human Membrane Proteins in Pichia pastoris for Fast-MAS-NMR Analyses.

Barret L, Schubeis T, Kugler V, Guyot L, Pintacuda G, Wagner R Methods Mol Biol. 2022; 2507:201-221.

PMID: 35773584 DOI: 10.1007/978-1-0716-2368-8_11.


Production of a Human Histamine Receptor for NMR Spectroscopy in Aqueous Solutions.

Mulry E, Ray A, Eddy M Biomolecules. 2021; 11(5).

PMID: 33923140 PMC: 8146376. DOI: 10.3390/biom11050632.


Improved Protocol for the Production of the Low-Expression Eukaryotic Membrane Protein Human Aquaporin 2 in for Solid-State NMR.

Munro R, de Vlugt J, Ladizhansky V, Brown L Biomolecules. 2020; 10(3).

PMID: 32168846 PMC: 7175339. DOI: 10.3390/biom10030434.


Improved strategy for isoleucine H/C methyl labeling in Pichia pastoris.

Ali R, Clark L, Zahm J, Lemoff A, Ramesh K, Rosenbaum D J Biomol NMR. 2019; 73(12):687-697.

PMID: 31541396 PMC: 6875547. DOI: 10.1007/s10858-019-00281-1.


References
1.
Pickford A, Oleary J . Isotopic labeling of recombinant proteins from the methylotrophic yeast Pichia pastoris. Methods Mol Biol. 2004; 278:17-33. DOI: 10.1385/1-59259-809-9:017. View

2.
Ratnala V, Kiihne S, Buda F, Leurs R, de Groot H, DeGrip W . Solid-state NMR evidence for a protonation switch in the binding pocket of the H1 receptor upon binding of the agonist histamine. J Am Chem Soc. 2007; 129(4):867-72. DOI: 10.1021/ja0652262. View

3.
Kim H, Howell S, Van Horn W, Jeon Y, Sanders C . Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. Prog Nucl Magn Reson Spectrosc. 2010; 55(4):335-360. PMC: 2782866. DOI: 10.1016/j.pnmrs.2009.07.002. View

4.
Shi L, Kawamura I, Jung K, Brown L, Ladizhansky V . Conformation of a seven-helical transmembrane photosensor in the lipid environment. Angew Chem Int Ed Engl. 2011; 50(6):1302-5. DOI: 10.1002/anie.201004422. View

5.
Ikeda D, Furutani Y, Kandori H . FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin. Biochemistry. 2007; 46(18):5365-73. DOI: 10.1021/bi700143g. View