» Articles » PMID: 20512150

Structure Determination of the Seven-helix Transmembrane Receptor Sensory Rhodopsin II by Solution NMR Spectroscopy

Overview
Date 2010 Jun 1
PMID 20512150
Citations 80
Authors
Affiliations
Soon will be listed here.
Abstract

Seven-helix membrane proteins represent a challenge for structural biology. Here we report the first NMR structure determination of a detergent-solubilized seven-helix transmembrane (7TM) protein, the phototaxis receptor sensory rhodopsin II (pSRII) from Natronomonas pharaonis, as a proof of principle. The overall quality of the structure ensemble is good (backbone r.m.s. deviation of 0.48 A) and agrees well with previously determined X-ray structures. Furthermore, measurements in more native-like small phospholipid bicelles indicate that the protein structure is the same as in detergent micelles, suggesting that environment-specific effects are minimal when using mild detergents. We use our case study as a platform to discuss the feasibility of similar solution NMR studies for other 7TM proteins, including members of the family of G protein-coupled receptors.

Citing Articles

NMR sample optimization and backbone assignment of a stabilized neurotensin receptor.

Mohamadi M, Goricanec D, Wagner G, Hagn F J Struct Biol. 2023; 215(2):107970.

PMID: 37142193 PMC: 10242673. DOI: 10.1016/j.jsb.2023.107970.


Sparse pseudocontact shift NMR data obtained from a non-canonical amino acid-linked lanthanide tag improves integral membrane protein structure prediction.

Ledwitch K, Kunze G, McKinney J, Okwei E, Larochelle K, Pankewitz L J Biomol NMR. 2023; 77(3):69-82.

PMID: 37016190 PMC: 10443207. DOI: 10.1007/s10858-023-00412-9.


Retinal-Carotenoid Interactions in a Sodium-Ion-Pumping Rhodopsin: Implications on Oligomerization and Thermal Stability.

Ghosh M, Misra R, Bhattacharya S, Majhi K, Jung K, Sheves M J Phys Chem B. 2023; 127(10):2128-2137.

PMID: 36857147 PMC: 10026069. DOI: 10.1021/acs.jpcb.2c07502.


GPCR structural characterization by NMR spectroscopy in solution.

Yang L, Liu D, Wuthrich K Acta Biochim Biophys Sin (Shanghai). 2022; 54(9):1207-1212.

PMID: 36017890 PMC: 9828178. DOI: 10.3724/abbs.2022106.


G Protein-coupled Receptor (GPCR) Reconstitution and Labeling for Solution Nuclear Magnetic Resonance (NMR) Studies of the Structural Basis of Transmembrane Signaling.

Ge H, Wang H, Pan B, Feng D, Guo C, Yang L Molecules. 2022; 27(9).

PMID: 35566006 PMC: 9101874. DOI: 10.3390/molecules27092658.


References
1.
Schnell J, Chou J . Structure and mechanism of the M2 proton channel of influenza A virus. Nature. 2008; 451(7178):591-5. PMC: 3108054. DOI: 10.1038/nature06531. View

2.
Haussinger D, Huang J, Grzesiek S . DOTA-M8: An extremely rigid, high-affinity lanthanide chelating tag for PCS NMR spectroscopy. J Am Chem Soc. 2009; 131(41):14761-7. DOI: 10.1021/ja903233w. View

3.
Topiol S, Sabio M . X-ray structure breakthroughs in the GPCR transmembrane region. Biochem Pharmacol. 2009; 78(1):11-20. DOI: 10.1016/j.bcp.2009.02.012. View

4.
Zhou Y, Cierpicki T, Flores Jimenez R, Lukasik S, Ellena J, Cafiso D . NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol Cell. 2008; 31(6):896-908. PMC: 2622435. DOI: 10.1016/j.molcel.2008.08.028. View

5.
Bertin B, Freissmuth M, Breyer R, Schutz W, Strosberg A, Marullo S . Functional expression of the human serotonin 5-HT1A receptor in Escherichia coli. Ligand binding properties and interaction with recombinant G protein alpha-subunits. J Biol Chem. 1992; 267(12):8200-6. View