» Articles » PMID: 21243716

KAT(ching) Metabolism by the Tail: Insight into the Links Between Lysine Acetyltransferases and Metabolism

Overview
Journal Chembiochem
Specialty Biochemistry
Date 2011 Jan 19
PMID 21243716
Citations 71
Authors
Affiliations
Soon will be listed here.
Abstract

Post-translational modifications of histones elicit structural and functional changes within chromatin that regulate various epigenetic processes. Epigenetic mechanisms rely on enzymes whose activities are driven by coenzymes and metabolites from intermediary metabolism. Lysine acetyltransferases (KATs) catalyze the transfer of acetyl groups from acetyl-CoA to epsilon amino groups. Utilization of this critical metabolite suggests these enzymes are modulated by the metabolic status of the cell. This review highlights studies linking KATs to metabolism. We cover newly identified acyl modifications (propionylation and butyrylation), discuss the control of KAT activity by cellular acetyl-CoA levels, and provide insights into how acetylation regulates metabolic proteins. We conclude with a discussion of the current approaches to identifying novel KATs and their metabolic substrates.

Citing Articles

Metabolism-driven chromatin dynamics: Molecular principles and technological advances.

Sahu V, Lu C Mol Cell. 2025; 85(2):262-275.

PMID: 39824167 PMC: 11750176. DOI: 10.1016/j.molcel.2024.12.012.


Impact of Lysine Succinylation on the Biology of Fungi.

Adejor J, Tumukunde E, Li G, Lin H, Xie R, Wang S Curr Issues Mol Biol. 2024; 46(2):1020-1046.

PMID: 38392183 PMC: 10888112. DOI: 10.3390/cimb46020065.


Acss2/HIF-2 signaling facilitates colon cancer growth and metastasis.

Garcia J, Chen R, Xu M, Comerford S, Hammer R, Melton S PLoS One. 2023; 18(3):e0282223.

PMID: 36862715 PMC: 9980813. DOI: 10.1371/journal.pone.0282223.


Modulating epigenetic modifications for cancer therapy (Review).

Castro-Munoz L, Ulloa E, Sahlgren C, Lizano M, De La Cruz-Hernandez E, Contreras-Paredes A Oncol Rep. 2023; 49(3).

PMID: 36799181 PMC: 9942256. DOI: 10.3892/or.2023.8496.


The role of protein acetylation in carcinogenesis and targeted drug discovery.

Yang J, Song C, Zhan X Front Endocrinol (Lausanne). 2022; 13:972312.

PMID: 36171897 PMC: 9510633. DOI: 10.3389/fendo.2022.972312.


References
1.
Starai V, Takahashi H, Boeke J, Escalante-Semerena J . Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. Genetics. 2003; 163(2):545-55. PMC: 1462443. DOI: 10.1093/genetics/163.2.545. View

2.
Lin Y, Lu J, Zhang J, Walter W, Dang W, Wan J . Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell. 2009; 136(6):1073-84. PMC: 2696288. DOI: 10.1016/j.cell.2009.01.033. View

3.
Musselman C, Mansfield R, Garske A, Davrazou F, Kwan A, Oliver S . Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications. Biochem J. 2009; 423(2):179-87. PMC: 2885444. DOI: 10.1042/BJ20090870. View

4.
Duncan M, Robinson M, DellOrco R . Kinetics of histone hyperacetylation and deacetylation in human diploid fibroblasts. Biochim Biophys Acta. 1983; 762(2):221-6. DOI: 10.1016/0167-4889(83)90074-5. View

5.
Starai V, Celic I, Cole R, Boeke J, Escalante-Semerena J . Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science. 2002; 298(5602):2390-2. DOI: 10.1126/science.1077650. View