» Articles » PMID: 20192265

Bioorthogonal Chemical Reporters for Monitoring Protein Acetylation

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2010 Mar 3
PMID 20192265
Citations 71
Authors
Affiliations
Soon will be listed here.
Abstract

Protein acetylation is a key post-translational modification that regulates diverse biological activities in eukaryotes. Here we report bioorthogonal chemical reporters that enable direct in-gel fluorescent visualization and proteome-wide identification of acetylated proteins via Cu(I)-catalyzed azide-alkyne cycloaddition, often termed "click chemistry". We demonstrate that two alkynyl-acetyl-CoA analogues, 4-pentynoyl-CoA and 5-hexynoyl-CoA, function as efficient substrates of lysine acetyltransferase p300 and serve as sensitive reagents for monitoring p300-catalyzed protein acetylation in vitro. In addition, we demonstrate that three alkynylacetate analogues, sodium 3-butynoate, sodium 4-pentynoate, and sodium 5-hexynoate, can be metabolically incorporated onto cellular proteins through biosynthetic mechanisms for profiling of acetylated proteins in diverse cell types. Mass spectrometry analysis of the enriched 4-pentynoate-labeled proteins revealed many reported as well as new candidate acetylated proteins from Jurkat T cells and specific sites of lysine acetylation. The bioorthogonal chemical reporters described here should serve as powerful tools for investigating protein acetylation.

Citing Articles

A click chemistry-based biorthogonal approach for the detection and identification of protein lysine malonylation for osteoarthritis research.

Binoy A, Nanjan P, Chellamuthu K, Liu H, Zhu S bioRxiv. 2024; .

PMID: 39713453 PMC: 11661220. DOI: 10.1101/2024.12.12.628274.


Full-length single-molecule protein fingerprinting.

Filius M, van Wee R, de Lannoy C, Westerlaken I, Li Z, Kim S Nat Nanotechnol. 2024; 19(5):652-659.

PMID: 38351230 DOI: 10.1038/s41565-023-01598-7.


Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization.

Alexander A, Elshahawi S Chembiochem. 2023; 24(17):e202300372.

PMID: 37338668 PMC: 10496146. DOI: 10.1002/cbic.202300372.


Fluorine-thiol displacement probes for acetaminophen's hepatotoxicity.

Prather B, Ji S, Zhao Y, Shajan F, Zhao M, Buuh Z Acta Pharm Sin B. 2023; 13(1):204-212.

PMID: 36815027 PMC: 9939312. DOI: 10.1016/j.apsb.2022.08.003.


Transforming Chemical Proteomics Enrichment into a High-Throughput Method Using an SP2E Workflow.

Becker T, Wiest A, Telek A, Bejko D, Hoffmann-Roder A, Kielkowski P JACS Au. 2022; 2(7):1712-1723.

PMID: 35911458 PMC: 9326820. DOI: 10.1021/jacsau.2c00284.


References
1.
Yu M, de Carvalho L, Sun G, Blanchard J . Activity-based substrate profiling for Gcn5-related N-acetyltransferases: the use of chloroacetyl-coenzyme A to identify protein substrates. J Am Chem Soc. 2006; 128(48):15356-7. PMC: 2569866. DOI: 10.1021/ja066298w. View

2.
An W, Roeder R . Direct association of p300 with unmodified H3 and H4 N termini modulates p300-dependent acetylation and transcription of nucleosomal templates. J Biol Chem. 2002; 278(3):1504-10. DOI: 10.1074/jbc.M209355200. View

3.
Basu A, L Rose K, Zhang J, Beavis R, Ueberheide B, Garcia B . Proteome-wide prediction of acetylation substrates. Proc Natl Acad Sci U S A. 2009; 106(33):13785-90. PMC: 2728972. DOI: 10.1073/pnas.0906801106. View

4.
Brownell J, Allis C . An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc Natl Acad Sci U S A. 1995; 92(14):6364-8. PMC: 41518. DOI: 10.1073/pnas.92.14.6364. View

5.
Kim S, Sprung R, Chen Y, Xu Y, Ball H, Pei J . Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell. 2006; 23(4):607-18. DOI: 10.1016/j.molcel.2006.06.026. View