» Articles » PMID: 21150317

Behavioral Responses to Hypoxia and Hyperoxia in Drosophila Larvae: Molecular and Neuronal Sensors

Overview
Journal Fly (Austin)
Specialty Biology
Date 2010 Dec 15
PMID 21150317
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

The ability to detect changes in oxygen concentration in the environment is critical to the survival of all animals. This requires cells to express a molecular oxygen sensor that can detect shifts in oxygen levels and transmit a signal that leads to the appropriate cellular response. Recent biochemical, genetic and behavioral studies have shown that the atypical soluble guanylyl cyclases function as oxygen detectors in Drosophila larvae triggering a behavioral escape response when exposed to hypoxia. These studies also identified the sensory neurons that innervate the terminal sensory cones as likely chemosensors that mediate this response. Here I summarize the data that led to these conclusions and also highlight evidence that suggests additional, as yet unidentified, proteins are also required for detecting increases and decreases in oxygen concentrations.

Citing Articles

The atypical soluble guanylyl cyclase subunit Gyc89Db does not control neuroepithelial proliferation in larval brain.

Rosas M, Cantera R, Prieto D MicroPubl Biol. 2024; 2024.

PMID: 39554806 PMC: 11568450. DOI: 10.17912/micropub.biology.001336.


Atypical soluble guanylyl cyclases control brain size in .

Prieto D, Egger B, Cantera R MicroPubl Biol. 2024; 2024.

PMID: 39185012 PMC: 11344882. DOI: 10.17912/micropub.biology.001252.


Transcriptome analysis of FOXO-dependent hypoxia gene expression identifies Hipk as a regulator of low oxygen tolerance in Drosophila.

Ding K, Barretto E, Johnston M, Lee B, Gallo M, Grewal S G3 (Bethesda). 2022; 12(12).

PMID: 36200850 PMC: 9713431. DOI: 10.1093/g3journal/jkac263.


Knockdown of a Cyclic Nucleotide-Gated Ion Channel Impairs Locomotor Activity and Recovery From Hypoxia in Adult .

Qiu S, Xiao C, Robertson R Front Physiol. 2022; 13:852919.

PMID: 35530504 PMC: 9075734. DOI: 10.3389/fphys.2022.852919.


cGMP signaling pathway that modulates NF-κB activation in innate immune responses.

Kanoh H, Iwashita S, Kuraishi T, Goto A, Fuse N, Ueno H iScience. 2022; 24(12):103473.

PMID: 34988396 PMC: 8710550. DOI: 10.1016/j.isci.2021.103473.


References
1.
Chang A, Chronis N, Karow D, Marletta M, Bargmann C . A distributed chemosensory circuit for oxygen preference in C. elegans. PLoS Biol. 2006; 4(9):e274. PMC: 1540710. DOI: 10.1371/journal.pbio.0040274. View

2.
Lucas K, Pitari G, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S . Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 2000; 52(3):375-414. View

3.
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P . Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003; 100(24):13940-5. PMC: 283525. DOI: 10.1073/pnas.1936192100. View

4.
Kaelin Jr W, Ratcliffe P . Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008; 30(4):393-402. DOI: 10.1016/j.molcel.2008.04.009. View

5.
Persson A, Gross E, Laurent P, Busch K, Bretes H, De Bono M . Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans. Nature. 2009; 458(7241):1030-3. DOI: 10.1038/nature07820. View