» Articles » PMID: 21147462

Differential Requirement for Caspase-1 Autoproteolysis in Pathogen-induced Cell Death and Cytokine Processing

Overview
Publisher Cell Press
Date 2010 Dec 15
PMID 21147462
Citations 328
Authors
Affiliations
Soon will be listed here.
Abstract

Activation of the cysteine protease Caspase-1 is a key event in the innate immune response to infections. Synthesized as a proprotein, Caspase-1 undergoes autoproteolysis within multiprotein complexes called inflammasomes. Activated Caspase-1 is required for proteolytic processing and for release of the cytokines interleukin-1β and interleukin-18, and it can also cause rapid macrophage cell death. We show that macrophage cell death and cytokine maturation in response to infection with diverse bacterial pathogens can be separated genetically and that two distinct inflammasome complexes mediate these events. Inflammasomes containing the signaling adaptor Asc form a single large "focus" in which Caspase-1 undergoes autoproteolysis and processes IL-1β/IL-18. In contrast, Asc-independent inflammasomes activate Caspase-1 without autoproteolysis and do not form any large structures in the cytosol. Caspase-1 mutants unable to undergo autoproteolysis promoted rapid cell death, but processed IL-1β/18 inefficiently. Our results suggest the formation of spatially and functionally distinct inflammasomes complexes in response to bacterial pathogens.

Citing Articles

The vasoconstrictor adenosine 5'-tetraphosphate is a danger signal that induces IL-1β.

Bockstiegel J, Engelhardt J, Schuchardt M, Tolle M, Weindl G Mol Med. 2025; 31(1):72.

PMID: 39984847 PMC: 11844157. DOI: 10.1186/s10020-025-01116-6.


OspF blocks rapid p38-dependent priming of the NAIP-NLRC4 inflammasome.

Turcotte E, Kim K, Eislmayr K, Goers L, Mitchell P, Lesser C bioRxiv. 2025; .

PMID: 39975412 PMC: 11838452. DOI: 10.1101/2025.02.01.636075.


Activation and evasion of inflammasomes during viral and microbial infection.

Ren D, Ye X, Chen R, Jia X, He X, Tao J Cell Mol Life Sci. 2025; 82(1):56.

PMID: 39833559 PMC: 11753444. DOI: 10.1007/s00018-025-05575-2.


ATM in immunobiology: From lymphocyte development to cancer immunotherapy.

Lee J Transl Oncol. 2025; 52():102268.

PMID: 39752906 PMC: 11754496. DOI: 10.1016/j.tranon.2024.102268.


Navigating from cellular phenotypic screen to clinical candidate: selective targeting of the NLRP3 inflammasome.

Matico R, Grauwen K, Chauhan D, Yu X, Abdiaj I, Adhikary S EMBO Mol Med. 2024; 17(1):54-84.

PMID: 39653810 PMC: 11730736. DOI: 10.1038/s44321-024-00181-4.


References
1.
Lightfield K, Persson J, Brubaker S, Witte C, von Moltke J, Dunipace E . Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol. 2008; 9(10):1171-8. PMC: 2614210. DOI: 10.1038/ni.1646. View

2.
Thornberry N, Bull H, Calaycay J, Chapman K, Howard A, Kostura M . A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992; 356(6372):768-74. DOI: 10.1038/356768a0. View

3.
Stennicke H, Deveraux Q, Humke E, Reed J, Dixit V, Salvesen G . Caspase-9 can be activated without proteolytic processing. J Biol Chem. 1999; 274(13):8359-62. DOI: 10.1074/jbc.274.13.8359. View

4.
Boatright K, Renatus M, Scott F, Sperandio S, Shin H, Pedersen I . A unified model for apical caspase activation. Mol Cell. 2003; 11(2):529-41. DOI: 10.1016/s1097-2765(03)00051-0. View

5.
Poyet J, Srinivasula S, Tnani M, Razmara M, Fernandes-Alnemri T, Alnemri E . Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem. 2001; 276(30):28309-13. DOI: 10.1074/jbc.C100250200. View