» Articles » PMID: 21106815

Gating of Signal Propagation in Spiking Neural Networks by Balanced and Correlated Excitation and Inhibition

Overview
Journal J Neurosci
Specialty Neurology
Date 2010 Nov 26
PMID 21106815
Citations 59
Authors
Affiliations
Soon will be listed here.
Abstract

Both ongoing and natural stimulus driven neuronal activity are dominated by transients. Selective gating of these transients is mandatory for proper brain function and may, in fact, form the basis of millisecond-fast decision making and action selection. Here we propose that neuronal networks may exploit timing differences between correlated excitation and inhibition (temporal gating) to control the propagation of spiking activity transients. When combined with excitation-inhibition balance, temporal gating constitutes a powerful mechanism to control the propagation of mixtures of transient and tonic neural activity components.

Citing Articles

Disinhibition Is an Essential Network Motif Coordinated by GABA Levels and GABA B Receptors.

Villalobos N Int J Mol Sci. 2024; 25(2).

PMID: 38279339 PMC: 10816949. DOI: 10.3390/ijms25021340.


Neural heterogeneity controls computations in spiking neural networks.

Gast R, Solla S, Kennedy A Proc Natl Acad Sci U S A. 2024; 121(3):e2311885121.

PMID: 38198531 PMC: 10801870. DOI: 10.1073/pnas.2311885121.


Inter-areal transmission of multiple neural signals through frequency-division-multiplexing communication.

Si H, Sun X Cogn Neurodyn. 2023; 17(5):1153-1165.

PMID: 37786658 PMC: 10542065. DOI: 10.1007/s11571-022-09914-y.


Retinal input integration in excitatory and inhibitory neurons in the mouse superior colliculus in vivo.

Gehr C, Sibille J, Kremkow J Elife. 2023; 12.

PMID: 37682267 PMC: 10491433. DOI: 10.7554/eLife.88289.


Role of interneuron subtypes in controlling trial-by-trial output variability in the neocortex.

Guo L, Kumar A Commun Biol. 2023; 6(1):874.

PMID: 37620550 PMC: 10449833. DOI: 10.1038/s42003-023-05231-0.


References
1.
Hromadka T, DeWeese M, Zador A . Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol. 2008; 6(1):e16. PMC: 2214813. DOI: 10.1371/journal.pbio.0060016. View

2.
Kapfer C, Glickfeld L, Atallah B, Scanziani M . Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nat Neurosci. 2007; 10(6):743-53. PMC: 3518866. DOI: 10.1038/nn1909. View

3.
Kumar A, Rotter S, Aertsen A . Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. J Neurosci. 2008; 28(20):5268-80. PMC: 6670637. DOI: 10.1523/JNEUROSCI.2542-07.2008. View

4.
Chen Y, Geisler W, Seidemann E . Optimal decoding of correlated neural population responses in the primate visual cortex. Nat Neurosci. 2006; 9(11):1412-20. PMC: 1851689. DOI: 10.1038/nn1792. View

5.
Davison A, Bruderle D, Eppler J, Kremkow J, Muller E, Pecevski D . PyNN: A Common Interface for Neuronal Network Simulators. Front Neuroinform. 2009; 2:11. PMC: 2634533. DOI: 10.3389/neuro.11.011.2008. View