» Articles » PMID: 21082891

Skeletal Myoblasts for Cardiac Repair

Overview
Journal Regen Med
Specialty Biotechnology
Date 2010 Nov 19
PMID 21082891
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

Stem cells provide an alternative curative intervention for the infarcted heart by compensating for the cardiomyocyte loss subsequent to myocardial injury. The presence of resident stem and progenitor cell populations in the heart, and nuclear reprogramming of somatic cells with genetic induction of pluripotency markers are the emerging new developments in stem cell-based regenerative medicine. However, until safety and feasibility of these cells are established by extensive experimentation in in vitro and in vivo experimental models, skeletal muscle-derived myoblasts, and bone marrow cells remain the most well-studied donor cell types for myocardial regeneration and repair. This article provides a critical review of skeletal myoblasts as donor cells for transplantation in the light of published experimental and clinical data, and indepth discussion of the advantages and disadvantages of skeletal myoblast-based therapeutic intervention for augmentation of myocardial function in the infarcted heart. Furthermore, strategies to overcome the problems of arrhythmogenicity and failure of the transplanted skeletal myoblasts to integrate with the host cardiomyocytes are discussed.

Citing Articles

Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications-Are We on the Road to Success?.

Correia C, Ferreira A, Fernandes M, Silva B, Esteves F, Leitao H Cells. 2023; 12(13).

PMID: 37443761 PMC: 10341347. DOI: 10.3390/cells12131727.


Remodeled eX vivo muscle engineered tissue improves heart function after chronic myocardial ischemia.

Cosentino M, Nicoletti C, Valenti V, Schirone L, di Nonno F, Apa L Sci Rep. 2023; 13(1):10370.

PMID: 37365262 PMC: 10293177. DOI: 10.1038/s41598-023-37553-8.


Cells and Materials for Cardiac Repair and Regeneration.

Alhejailan R, Garoffolo G, Raveendran V, Pesce M J Clin Med. 2023; 12(10).

PMID: 37240504 PMC: 10219302. DOI: 10.3390/jcm12103398.


Preclinical Large Animal Porcine Models for Cardiac Regeneration and Its Clinical Translation: Role of hiPSC-Derived Cardiomyocytes.

Sridharan D, Pracha N, Rana S, Ahmed S, Dewani A, Alvi S Cells. 2023; 12(7).

PMID: 37048163 PMC: 10093073. DOI: 10.3390/cells12071090.


Recent Advances in Cell Sheet Engineering: From Fabrication to Clinical Translation.

Thummarati P, Laiwattanapaisal W, Nitta R, Fukuda M, Hassametto A, Kino-Oka M Bioengineering (Basel). 2023; 10(2).

PMID: 36829705 PMC: 9952256. DOI: 10.3390/bioengineering10020211.


References
1.
Kim H, Lee Y, Sivaprasad U, Malhotra A, Dutta A . Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol. 2006; 174(5):677-87. PMC: 2064311. DOI: 10.1083/jcb.200603008. View

2.
Halbach M, Pfannkuche K, Pillekamp F, Ziomka A, Hannes T, Reppel M . Electrophysiological maturation and integration of murine fetal cardiomyocytes after transplantation. Circ Res. 2007; 101(5):484-92. DOI: 10.1161/CIRCRESAHA.107.153643. View

3.
Soonpaa M, Field L . Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol. 1997; 272(1 Pt 2):H220-6. DOI: 10.1152/ajpheart.1997.272.1.H220. View

4.
Siminiak T, Kalawski R, Fiszer D, Jerzykowska O, Rzezniczak J, Rozwadowska N . Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J. 2004; 148(3):531-7. DOI: 10.1016/j.ahj.2004.03.043. View

5.
Hata H, Matsumiya G, Miyagawa S, Kondoh H, Kawaguchi N, Matsuura N . Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. J Thorac Cardiovasc Surg. 2006; 132(4):918-24. DOI: 10.1016/j.jtcvs.2006.01.024. View