Delay of Migrating Leukocytes by the Basement Membrane Deposited by Endothelial Cells in Long-term Culture
Overview
Authors
Affiliations
We investigated the migration of human leukocytes through endothelial cells (EC), and particularly their underlying basement membrane (BM). EC were cultured for 20days on 3μm-pore filters or collagen gels to form a distinct BM, and then treated with tumour necrosis factor-α, interleukin-1β or interferon-γ. Neutrophil migration through the cytokine-treated EC and BM was delayed for 20-day compared to 4-day cultures. The BM alone obstructed chemotaxis of neutrophils, and if fresh EC were briefly cultured on stripped BM, there was again a hold-up in migration. In studies with lymphocytes and monocytes, we could detect little hold-up of migration for 20-day versus 4-day cultures, in either the filter- or gel-based models. Direct microscopic observations showed that BM also held-up neutrophil migration under conditions of flow. Treatment of upper and/or lower compartments of filters with antibodies against integrins, showed that neutrophil migration through the endothelial monolayer was dependent on β(2)-integrins, but not β1- or β(3)-integrins. Migration from the subendothelial compartment was supported by β1- and β(2)-integrins for all cultures, but blockade of β(3)-integrin only inhibited migration effectively for 20-day cultures. Flow cytometry indicated that there was no net increase in expression of β1- or β3-integrins during neutrophil migration, and that their specific subendothelial function was likely dependent on turnover of integrins during migration. These studies show that BM is a distinct barrier to migration of human neutrophils, and that β(3)-integrins are particularly important in crossing this barrier. The lesser effect of BM on lymphocytes and monocytes supports the concept that crossing the BM is a separate, leukocyte-specific, regulated step in migration.
Perez-Figueroa E, Alvarez-Carrasco P, Ortega E Front Immunol. 2022; 13:994496.
PMID: 36439182 PMC: 9686367. DOI: 10.3389/fimmu.2022.994496.
Demyanenko S, Pitinova M, Kalyuzhnaya Y, Khaitin A, Batalshchikova S, Dobaeva N Int J Mol Sci. 2022; 23(15).
PMID: 35955732 PMC: 9369448. DOI: 10.3390/ijms23158583.
Microvascular Mimetics for the Study of Leukocyte-Endothelial Interactions.
Khire T, Salminen A, Swamy H, Lucas K, McCloskey M, Ajalik R Cell Mol Bioeng. 2020; 13(2):125-139.
PMID: 32175026 PMC: 7048879. DOI: 10.1007/s12195-020-00611-6.
The Aminopeptidase CD13 Induces Homotypic Aggregation in Neutrophils and Impairs Collagen Invasion.
Fiddler C, Parfrey H, Cowburn A, Luo D, Nash G, Murphy G PLoS One. 2016; 11(7):e0160108.
PMID: 27467268 PMC: 4965216. DOI: 10.1371/journal.pone.0160108.
Luo D, McGettrick H, Stone P, Rainger G, Nash G PLoS One. 2015; 10(2):e0118593.
PMID: 25706870 PMC: 4338182. DOI: 10.1371/journal.pone.0118593.