» Articles » PMID: 21051337

Determinants of R-loop Formation at Convergent Bidirectionally Transcribed Trinucleotide Repeats

Overview
Specialty Biochemistry
Date 2010 Nov 6
PMID 21051337
Citations 86
Authors
Affiliations
Soon will be listed here.
Abstract

R-loops have been described at immunoglobulin class switch sequences, prokaryotic and mitochondrial replication origins, and disease-associated (CAG)n and (GAA)n trinucleotide repeats. The determinants of trinucleotide R-loop formation are unclear. Trinucleotide repeat expansions cause diseases including DM1 (CTG)n, SCA1 (CAG)n, FRAXA (CGG)n, FRAXE (CCG)n and FRDA (GAA)n. Bidirectional convergent transcription across these disease repeats can occur. We find R-loops formed when CTG or CGG and their complementary strands CAG or CCG were transcribed; GAA transcription, but not TTC, yielded R-loops. R-loop formation was sensitive to DNA supercoiling, repeat length, insensitive to repeat interruptions, and formed by extension of RNA:DNA hybrids in the RNA polymerase. R-loops arose by transcription in one direction followed by transcription in the opposite direction, and during simultaneous convergent bidirectional transcription of the same repeat forming double R-loop structures. Since each transcribed disease repeat formed R-loops suggests they may have biological functions.

Citing Articles

Triplex H-DNA structure: the long and winding road from the discovery to its role in human disease.

Hisey J, Masnovo C, Mirkin S NAR Mol Med. 2024; 1(4):ugae024.

PMID: 39723156 PMC: 11667243. DOI: 10.1093/narmme/ugae024.


Deep learning-enhanced R-loop prediction provides mechanistic implications for repeat expansion diseases.

Hu J, Xing Z, Yang H, Zhou Y, Guo L, Zhang X iScience. 2024; 27(8):110584.

PMID: 39188986 PMC: 11345597. DOI: 10.1016/j.isci.2024.110584.


Role of senataxin in R-loop-mediated neurodegeneration.

Kannan A, Gangadharan Leela S, Branzei D, Gangwani L Brain Commun. 2024; 6(4):fcae239.

PMID: 39070547 PMC: 11277865. DOI: 10.1093/braincomms/fcae239.


co-evolving with the CAG-repeat tract - modulates Huntington's disease phenotypes.

Morandell J, Monziani A, Lazioli M, Donzel D, Doring J, Oss Pegorar C Mol Ther Nucleic Acids. 2024; 35(3):102234.

PMID: 38974999 PMC: 11225910. DOI: 10.1016/j.omtn.2024.102234.


R-loop and diseases: the cell cycle matters.

Xu Y, Jiao Y, Liu C, Miao R, Liu C, Wang Y Mol Cancer. 2024; 23(1):84.

PMID: 38678239 PMC: 11055327. DOI: 10.1186/s12943-024-02000-3.


References
1.
Sobczak K, Krzyzosiak W . Imperfect CAG repeats form diverse structures in SCA1 transcripts. J Biol Chem. 2004; 279(40):41563-72. DOI: 10.1074/jbc.M405130200. View

2.
Perlot T, Li G, Alt F . Antisense transcripts from immunoglobulin heavy-chain locus V(D)J and switch regions. Proc Natl Acad Sci U S A. 2008; 105(10):3843-8. PMC: 2268805. DOI: 10.1073/pnas.0712291105. View

3.
Tian M, Alt F . Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J Biol Chem. 2000; 275(31):24163-72. DOI: 10.1074/jbc.M003343200. View

4.
Cho D, Thienes C, Mahoney S, Analau E, Filippova G, Tapscott S . Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell. 2005; 20(3):483-9. DOI: 10.1016/j.molcel.2005.09.002. View

5.
Roy D, Yu K, Lieber M . Mechanism of R-loop formation at immunoglobulin class switch sequences. Mol Cell Biol. 2007; 28(1):50-60. PMC: 2223306. DOI: 10.1128/MCB.01251-07. View