» Articles » PMID: 21033689

Mechanism of Inactivation of Escherichia Coli Aspartate Aminotransferase by (S)-4-amino-4,5-dihydro-2-furancarboxylic Acid

Overview
Journal Biochemistry
Specialty Biochemistry
Date 2010 Nov 2
PMID 21033689
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

As a potential drug to treat neurological diseases, the mechanism-based inhibitor (S)-4-amino-4,5-dihydro-2-furancarboxylic acid (S-ADFA) has been found to inhibit the γ-aminobutyric acid aminotransferase (GABA-AT) reaction. To circumvent the difficulties in structural studies of a S-ADFA-enzyme complex using GABA-AT, l-aspartate aminotransferase (l-AspAT) from Escherichia coli was used as a model PLP-dependent enzyme. Crystal structures of the E. coli aspartate aminotransferase with S-ADFA bound to the active site were obtained via cocrystallization at pH 7.5 and 8. The complex structures suggest that S-ADFA inhibits the transamination reaction by forming adducts with the catalytic lysine 246 via a covalent bond while producing 1 equiv of pyridoxamine 5'-phosphate (PMP). Based on the structures, formation of the K246-S-ADFA adducts requires a specific initial binding configuration of S-ADFA in the l-AspAT active site, as well as deprotonation of the ε-amino group of lysine 246 after the formation of the quinonoid and/or ketimine intermediate in the overall inactivation reaction.

Citing Articles

Design and Mechanism of GABA Aminotransferase Inactivators. Treatments for Epilepsies and Addictions.

Silverman R Chem Rev. 2018; 118(7):4037-4070.

PMID: 29569907 PMC: 8459698. DOI: 10.1021/acs.chemrev.8b00009.


Selective Targeting by a Mechanism-Based Inactivator against Pyridoxal 5'-Phosphate-Dependent Enzymes: Mechanisms of Inactivation and Alternative Turnover.

Mascarenhas R, Le H, Clevenger K, Lehrer H, Ringe D, Kelleher N Biochemistry. 2017; 56(37):4951-4961.

PMID: 28816437 PMC: 5624218. DOI: 10.1021/acs.biochem.7b00499.


PLP and GABA trigger GabR-mediated transcription regulation in via external aldimine formation.

Wu R, Sanishvili R, Belitsky B, Juncosa J, Le H, Lehrer H Proc Natl Acad Sci U S A. 2017; 114(15):3891-3896.

PMID: 28348215 PMC: 5393194. DOI: 10.1073/pnas.1703019114.


Design and synthesis of potential mechanism-based inhibitors of the aminotransferase BioA involved in biotin biosynthesis.

Shi C, Aldrich C J Org Chem. 2012; 77(14):6051-8.

PMID: 22724679 PMC: 3448953. DOI: 10.1021/jo3008435.


Mechanism-based inactivation by aromatization of the transaminase BioA involved in biotin biosynthesis in Mycobaterium tuberculosis.

Shi C, Geders T, Park S, Wilson D, Boshoff H, Abayomi O J Am Chem Soc. 2011; 133(45):18194-201.

PMID: 21988601 PMC: 3222238. DOI: 10.1021/ja204036t.

References
1.
Shah S, Shen B, Brunger A . Human ornithine aminotransferase complexed with L-canaline and gabaculine: structural basis for substrate recognition. Structure. 1997; 5(8):1067-75. DOI: 10.1016/s0969-2126(97)00258-x. View

2.
Bryans J, Wustrow D . 3-substituted GABA analogs with central nervous system activity: a review. Med Res Rev. 1999; 19(2):149-77. DOI: 10.1002/(sici)1098-1128(199903)19:2<149::aid-med3>3.0.co;2-b. View

3.
Nanavati S, Silverman R . Design of potential anticonvulsant agents: mechanistic classification of GABA aminotransferase inactivators. J Med Chem. 1989; 32(11):2413-21. DOI: 10.1021/jm00131a001. View

4.
Brunger A, Adams P, Clore G, DeLano W, Gros P, Grosse-Kunstleve R . Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998; 54(Pt 5):905-21. DOI: 10.1107/s0907444998003254. View

5.
Winn M, Isupov M, Murshudov G . Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr D Biol Crystallogr. 2001; 57(Pt 1):122-33. DOI: 10.1107/s0907444900014736. View