» Articles » PMID: 21030657

Filtering of Visual Information in the Tectum by an Identified Neural Circuit

Overview
Journal Science
Specialty Science
Date 2010 Oct 30
PMID 21030657
Citations 109
Authors
Affiliations
Soon will be listed here.
Abstract

The optic tectum of zebrafish is involved in behavioral responses that require the detection of small objects. The superficial layers of the tectal neuropil receive input from retinal axons, while its deeper layers convey the processed information to premotor areas. Imaging with a genetically encoded calcium indicator revealed that the deep layers, as well as the dendrites of single tectal neurons, are preferentially activated by small visual stimuli. This spatial filtering relies on GABAergic interneurons (using the neurotransmitter γ-aminobutyric acid) that are located in the superficial input layer and respond only to large visual stimuli. Photo-ablation of these cells with KillerRed, or silencing of their synaptic transmission, eliminates the size tuning of deeper layers and impairs the capture of prey.

Citing Articles

Decreased GABA levels during development result in increased connectivity in the larval zebrafish tectum.

Liu Y, Chen Y, Duffy C, VanLeuven A, Byers J, Schriever H bioRxiv. 2024; .

PMID: 39314470 PMC: 11419034. DOI: 10.1101/2024.09.11.612511.


Spatial and single-nucleus transcriptomics decoding the molecular landscape and cellular organization of avian optic tectum.

Liao K, Xiang Y, Huang F, Huang M, Xu W, Lin Y iScience. 2024; 27(2):109009.

PMID: 38333704 PMC: 10850779. DOI: 10.1016/j.isci.2024.109009.


In toto imaging of glial JNK signaling during larval zebrafish spinal cord regeneration.

Becker C, Cigliola V, Gillotay P, Rich A, Simone A, Han Y Development. 2023; 150(24).

PMID: 37997694 PMC: 10753585. DOI: 10.1242/dev.202076.


African jewel fish (Hemichromis bimaculatus) distinguish individual faces based on their unique iridophore patterns.

Coss R, Tyler C Anim Cogn. 2023; 26(4):1411-1421.

PMID: 37269406 PMC: 10344835. DOI: 10.1007/s10071-023-01790-1.


Whole-brain imaging of freely-moving zebrafish.

Hasani H, Sun J, Zhu S, Rong Q, Willomitzer F, Amor R Front Neurosci. 2023; 17:1127574.

PMID: 37139528 PMC: 10150962. DOI: 10.3389/fnins.2023.1127574.


References
1.
Xiao T, Roeser T, Staub W, Baier H . A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection. Development. 2005; 132(13):2955-67. DOI: 10.1242/dev.01861. View

2.
Ramdya P, Engert F . Emergence of binocular functional properties in a monocular neural circuit. Nat Neurosci. 2009; 11(9):1083-90. PMC: 2958220. DOI: 10.1038/nn.2166. View

3.
Sato T, Hamaoka T, Aizawa H, Hosoya T, Okamoto H . Genetic single-cell mosaic analysis implicates ephrinB2 reverse signaling in projections from the posterior tectum to the hindbrain in zebrafish. J Neurosci. 2007; 27(20):5271-9. PMC: 6672335. DOI: 10.1523/JNEUROSCI.0883-07.2007. View

4.
Nevin L, Robles E, Baier H, Scott E . Focusing on optic tectum circuitry through the lens of genetics. BMC Biol. 2010; 8:126. PMC: 2949621. DOI: 10.1186/1741-7007-8-126. View

5.
Sajovic P, Levinthal C . Visual cells of zebrafish optic tectum: mapping with small spots. Neuroscience. 1982; 7(10):2407-26. DOI: 10.1016/0306-4522(82)90204-4. View