» Articles » PMID: 20890117

Factors Controlling Cardiac Neural Crest Cell Migration

Overview
Journal Cell Adh Migr
Specialty Cell Biology
Date 2010 Oct 5
PMID 20890117
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Cardiac neural crest cells originate as part of the postotic caudal rhombencephalic neural crest stream. Ectomesenchymal cells in this stream migrate to the circumpharyngeal ridge and then into the caudal pharyngeal arches where they condense to form first a sheath and then the smooth muscle tunics of the persisting pharyngeal arch arteries. A subset of the cells continue migrating into the cardiac outflow tract where they will condense to form the aorticopulmonary septum. Cell signaling, extracellular matrix and cell-cell contacts are all critical for the initial migration, pauses, continued migration, and condensation of these cells. This review elucidates what is currently known about these factors.

Citing Articles

The molecular mechanisms of cardiac development and related diseases.

Li Y, Du J, Deng S, Liu B, Jing X, Yan Y Signal Transduct Target Ther. 2024; 9(1):368.

PMID: 39715759 PMC: 11666744. DOI: 10.1038/s41392-024-02069-8.


Exploring the origins of neurodevelopmental proteasomopathies associated with cardiac malformations: are neural crest cells central to certain pathological mechanisms?.

Vignard V, Baruteau A, Toutain B, Mercier S, Isidor B, Redon R Front Cell Dev Biol. 2024; 12:1370905.

PMID: 39071803 PMC: 11272537. DOI: 10.3389/fcell.2024.1370905.


Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap.

Chatzi D, Kyriakoudi S, Dermitzakis I, Manthou M, Meditskou S, Theotokis P J Clin Med. 2024; 13(8).

PMID: 38673496 PMC: 11050951. DOI: 10.3390/jcm13082223.


A Multicenter Analysis of Abnormal Chromosomal Microarray Findings in Congenital Heart Disease.

Landis B, Helvaty L, Geddes G, Lin J, Yatsenko S, Lo C J Am Heart Assoc. 2023; 12(18):e029340.

PMID: 37681527 PMC: 10547279. DOI: 10.1161/JAHA.123.029340.


Variations in the poly-histidine repeat motif of HOXA1 contribute to bicuspid aortic valve in mouse and zebrafish.

Odelin G, Faucherre A, Marchese D, Pinard A, Jaouadi H, Scouarnec S Nat Commun. 2023; 14(1):1543.

PMID: 36941270 PMC: 10027860. DOI: 10.1038/s41467-023-37110-x.


References
1.
McLennan R, Teddy J, Kasemeier-Kulesa J, Romine M, Kulesa P . Vascular endothelial growth factor (VEGF) regulates cranial neural crest migration in vivo. Dev Biol. 2009; 339(1):114-25. PMC: 3498053. DOI: 10.1016/j.ydbio.2009.12.022. View

2.
Suzuki H, Kirby M . Absence of neural crest cell regeneration from the postotic neural tube. Dev Biol. 1997; 184(2):222-33. DOI: 10.1006/dbio.1997.8529. View

3.
Drerup C, Wiora H, Topczewski J, Morris J . Disc1 regulates foxd3 and sox10 expression, affecting neural crest migration and differentiation. Development. 2009; 136(15):2623-32. PMC: 2709068. DOI: 10.1242/dev.030577. View

4.
FEINER L, Webber A, Brown C, Lu M, Jia L, Feinstein P . Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development. 2001; 128(16):3061-70. DOI: 10.1242/dev.128.16.3061. View

5.
Labonne C, Bronner-Fraser M . Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration. Dev Biol. 2000; 221(1):195-205. DOI: 10.1006/dbio.2000.9609. View