» Articles » PMID: 20870747

C-terminal Domain of Archaeal O-phosphoseryl-tRNA Kinase Displays Large-scale Motion to Bind the 7-bp D-stem of Archaeal TRNA(Sec)

Overview
Specialty Biochemistry
Date 2010 Sep 28
PMID 20870747
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

O-Phosphoseryl-tRNA kinase (PSTK) is the key enzyme in recruiting selenocysteine (Sec) to the genetic code of archaea and eukaryotes. The enzyme phosphorylates Ser-tRNA(Sec) to produce O-phosphoseryl-tRNA(Sec) (Sep-tRNA(Sec)) that is then converted to Sec-tRNA(Sec) by Sep-tRNA:Sec-tRNA synthase. Earlier we reported the structure of the Methanocaldococcus jannaschii PSTK (MjPSTK) complexed with AMPPNP. This study presents the crystal structure (at 2.4-Å resolution) of MjPSTK complexed with an anticodon-stem/loop truncated tRNA(Sec) (Mj*tRNA(Sec)), a good enzyme substrate. Mj*tRNA(Sec) is bound between the enzyme's C-terminal domain (CTD) and N-terminal kinase domain (NTD) that are connected by a flexible 11 amino acid linker. Upon Mj*tRNA(Sec) recognition the CTD undergoes a 62-Å movement to allow proper binding of the 7-bp D-stem. This large reorganization of the PSTK quaternary structure likely provides a means by which the unique tRNA(Sec) species can be accurately recognized with high affinity by the translation machinery. However, while the NTD recognizes the tRNA acceptor helix, shortened versions of MjPSTK (representing only 60% of the original size, in which the entire CTD, linker loop and an adjacent NTD helix are missing) are still active in vivo and in vitro, albeit with reduced activity compared to the full-length enzyme.

Citing Articles

PSTK exerts protective role in cisplatin-tubular cell injury via BAX/BCL2/Caspase3 pathway.

Wu Y, Xv Y, Zhao L, Zhou Z, Wang M, Xi J Physiol Rep. 2025; 13(1):e70162.

PMID: 39794890 PMC: 11723822. DOI: 10.14814/phy2.70162.


Unconventional genetic code systems in archaea.

Meng K, Chung C, Soll D, Krahn N Front Microbiol. 2022; 13:1007832.

PMID: 36160229 PMC: 9499178. DOI: 10.3389/fmicb.2022.1007832.


Naturally Occurring tRNAs With Non-canonical Structures.

Krahn N, Fischer J, Soll D Front Microbiol. 2020; 11:596914.

PMID: 33193279 PMC: 7609411. DOI: 10.3389/fmicb.2020.596914.


Trypanosomatid selenophosphate synthetase structure, function and interaction with selenocysteine lyase.

da Silva M, E Silva I, Faim L, Bellini N, Pereira M, Lima A PLoS Negl Trop Dis. 2020; 14(10):e0008091.

PMID: 33017394 PMC: 7595633. DOI: 10.1371/journal.pntd.0008091.


Kti12, a PSTK-like tRNA dependent ATPase essential for tRNA modification by Elongator.

Krutyholowa R, Hammermeister A, Zabel R, Abdel-Fattah W, Reinhardt-Tews A, Helm M Nucleic Acids Res. 2019; 47(9):4814-4830.

PMID: 30916349 PMC: 6511879. DOI: 10.1093/nar/gkz190.


References
1.
Palioura S, Sherrer R, Steitz T, Soll D, Simonovic M . The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation. Science. 2009; 325(5938):321-5. PMC: 2857584. DOI: 10.1126/science.1173755. View

2.
Yuan J, Palioura S, Salazar J, Su D, ODonoghue P, Hohn M . RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc Natl Acad Sci U S A. 2006; 103(50):18923-7. PMC: 1748153. DOI: 10.1073/pnas.0609703104. View

3.
Sherrer R, Ho J, Soll D . Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase. Nucleic Acids Res. 2008; 36(6):1871-80. PMC: 2330242. DOI: 10.1093/nar/gkn036. View

4.
Carlson B, Xu X, Kryukov G, Rao M, Berry M, Gladyshev V . Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase. Proc Natl Acad Sci U S A. 2004; 101(35):12848-53. PMC: 516484. DOI: 10.1073/pnas.0402636101. View

5.
Sturchler C, Westhof E, Carbon P, Krol A . Unique secondary and tertiary structural features of the eucaryotic selenocysteine tRNA(Sec). Nucleic Acids Res. 1993; 21(5):1073-9. PMC: 309265. DOI: 10.1093/nar/21.5.1073. View