» Articles » PMID: 20867207

Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches

Overview
Journal Phys Rev Lett
Specialty Biophysics
Date 2010 Sep 28
PMID 20867207
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: (a) traveling waves, (b) moving patches, and (c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism not involving myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.

Citing Articles

Supramolecular fibrillation in coacervates and other confined systems towards biomimetic function.

Sanchez-Fernandez A, Insua I, Montenegro J Commun Chem. 2024; 7(1):223.

PMID: 39349583 PMC: 11442845. DOI: 10.1038/s42004-024-01308-x.


Supramolecular fibrillation of peptide amphiphiles induces environmental responses in aqueous droplets.

Booth R, Insua I, Ahmed S, Rioboo A, Montenegro J Nat Commun. 2021; 12(1):6421.

PMID: 34741043 PMC: 8571317. DOI: 10.1038/s41467-021-26681-2.


Reproducing asymmetrical spine shape fluctuations in a model of actin dynamics predicts self-organized criticality.

Bonilla-Quintana M, Worgotter F, DEste E, Tetzlaff C, Fauth M Sci Rep. 2021; 11(1):4012.

PMID: 33597561 PMC: 7889935. DOI: 10.1038/s41598-021-83331-9.


Why a Large-Scale Mode Can Be Essential for Understanding Intracellular Actin Waves.

Beta C, Gov N, Yochelis A Cells. 2020; 9(6).

PMID: 32585983 PMC: 7349605. DOI: 10.3390/cells9061533.


Quasi-periodic migration of single cells on short microlanes.

Zhou F, Schaffer S, Schreiber C, Segerer F, Goychuk A, Frey E PLoS One. 2020; 15(4):e0230679.

PMID: 32282802 PMC: 7153896. DOI: 10.1371/journal.pone.0230679.


References
1.
Vicker M . Eukaryotic cell locomotion depends on the propagation of self-organized reaction-diffusion waves and oscillations of actin filament assembly. Exp Cell Res. 2002; 275(1):54-66. DOI: 10.1006/excr.2001.5466. View

2.
Pantaloni D, Boujemaa R, Didry D, Gounon P, Carlier M . The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nat Cell Biol. 2000; 2(7):385-91. DOI: 10.1038/35017011. View

3.
Yamaguchi H, Condeelis J . Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta. 2006; 1773(5):642-52. PMC: 4266238. DOI: 10.1016/j.bbamcr.2006.07.001. View

4.
Pollard T, Borisy G . Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003; 112(4):453-65. DOI: 10.1016/s0092-8674(03)00120-x. View

5.
Carlsson A . Growth of branched actin networks against obstacles. Biophys J. 2001; 81(4):1907-23. PMC: 1301666. DOI: 10.1016/S0006-3495(01)75842-0. View