» Articles » PMID: 20858961

Grape Derived Polyphenols Attenuate Tau Neuropathology in a Mouse Model of Alzheimer's Disease

Overview
Publisher Sage Publications
Specialties Geriatrics
Neurology
Date 2010 Sep 23
PMID 20858961
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Aggregation of microtubule-associated protein tau into insoluble intracellular neurofibrillary tangles is a characteristic hallmark of Alzheimer's disease (AD) and other neurodegenerative diseases, including progressive supranuclear palsy, argyrophilic grain disease, corticobasal degeneration, frontotemporal dementias with Parkinsonism linked to chromosome 17, and Pick's disease. Tau is abnormally hyperphosphorylated in AD and aberrant tau phosphorylation contributes to the neuropathology of AD and other tauopathies. Anti-aggregation and anti-phosphorylation are main approaches for tau-based therapy. In this study, we report that a select grape-seed polyphenol extract (GSPE) could potently interfere with the assembly of tau peptides into neurotoxic aggregates. Moreover, oral administration of GSPE significantly attenuated the development of AD type tau neuropathology in the brain of TMHT mouse model of AD through mechanisms associated with attenuation of extracellular signal-receptor kinase 1/2 signaling in the brain.

Citing Articles

Investigating the Impact of Sorghum on Tau Protein Phosphorylation and Mitochondrial Dysfunction Modulation in Alzheimer's Disease: An In Vitro Study.

Rezaee N, Hone E, Sohrabi H, Abdulraheem R, Johnson S, Gunzburg S Nutrients. 2025; 17(3).

PMID: 39940374 PMC: 11820761. DOI: 10.3390/nu17030516.


Natural products against tau hyperphosphorylation-induced aggregates: Potential therapies for Alzheimer's disease.

Basurto-Islas G, Diaz M, Ocampo L, Martinez-Herrera M, Lopez-Camacho P Arch Pharm (Weinheim). 2025; 358(1):e2400721.

PMID: 39888017 PMC: 11781347. DOI: 10.1002/ardp.202400721.


Olive Oil Industry By-Products as a Novel Source of Biophenols with a Promising Role in Alzheimer Disease Prevention.

Goncalves M, Costa M, Paiva-Martins F, Silva P Molecules. 2024; 29(20).

PMID: 39459209 PMC: 11510978. DOI: 10.3390/molecules29204841.


The Potential Effects of Red Wine and Its Components on Neurocognitive Disorders: A Narrative Review.

Boccardi V, Tagliafico L, Persia A, Page E, Ottaviani S, Cremonini A Nutrients. 2024; 16(20).

PMID: 39458427 PMC: 11510231. DOI: 10.3390/nu16203431.


Neuroprotective Potential of Flavonoids in Brain Disorders.

Hasan S, Khatri N, Rahman Z, Menezes A, Martini J, Shehjar F Brain Sci. 2023; 13(9).

PMID: 37759859 PMC: 10526484. DOI: 10.3390/brainsci13091258.