» Articles » PMID: 20838588

Long- and Short-term Selective Forces on Malaria Parasite Genomes

Overview
Journal PLoS Genet
Specialty Genetics
Date 2010 Sep 15
PMID 20838588
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Plasmodium parasites, the causal agents of malaria, result in more than 1 million deaths annually. Plasmodium are unicellular eukaryotes with small ∼23 Mb genomes encoding ∼5200 protein-coding genes. The protein-coding genes comprise about half of these genomes. Although evolutionary processes have a significant impact on malaria control, the selective pressures within Plasmodium genomes are poorly understood, particularly in the non-protein-coding portion of the genome. We use evolutionary methods to describe selective processes in both the coding and non-coding regions of these genomes. Based on genome alignments of seven Plasmodium species, we show that protein-coding, intergenic and intronic regions are all subject to purifying selection and we identify 670 conserved non-genic elements. We then use genome-wide polymorphism data from P. falciparum to describe short-term selective processes in this species and identify some candidate genes for balancing (diversifying) selection. Our analyses suggest that there are many functional elements in the non-genic regions of these genomes and that adaptive evolution has occurred more frequently in the protein-coding regions of the genome.

Citing Articles

Candidates for Balancing Selection in Leishmania donovani Complex Parasites.

Grace C, Forrester S, Costa Silva V, Carvalho K, Kilford H, Chew Y Genome Biol Evol. 2021; 13(12).

PMID: 34865011 PMC: 8717319. DOI: 10.1093/gbe/evab265.


Diagnosing the drug resistance signature in : a review from contemporary methods to novel approaches.

Murmu L, Sahu A, Barik T J Parasit Dis. 2021; 45(3):869-876.

PMID: 34475670 PMC: 8368610. DOI: 10.1007/s12639-020-01333-2.


Genome-Wide Analysis of the Malaria Parasite Isolates From Togo Reveals Selective Signals in Immune Selection-Related Antigen Genes.

Kassegne K, Komi Koukoura K, Shen H, Chen S, Fu H, Chen Y Front Immunol. 2020; 11:552698.

PMID: 33193320 PMC: 7645038. DOI: 10.3389/fimmu.2020.552698.


Genetic Markers of Adaptation of Plasmodium falciparum to Transmission by American Vectors Identified in the Genomes of Parasites from Haiti and South America.

Tagliamonte M, Yowell C, Elbadry M, Boncy J, Raccurt C, Okech B mSphere. 2020; 5(5).

PMID: 33087522 PMC: 7580960. DOI: 10.1128/mSphere.00937-20.


Host-parasite co-evolution and its genomic signature.

Ebert D, Fields P Nat Rev Genet. 2020; 21(12):754-768.

PMID: 32860017 DOI: 10.1038/s41576-020-0269-1.


References
1.
Bray N, Pachter L . MAVID: constrained ancestral alignment of multiple sequences. Genome Res. 2004; 14(4):693-9. PMC: 383315. DOI: 10.1101/gr.1960404. View

2.
Kar P, Dash A, Supakar P . Polymorphism study of rhoptry associated membrane antigen (RAMA) gene of Plasmodium falciparum--a putative vaccine candidate. Mol Biochem Parasitol. 2007; 155(2):156-60. DOI: 10.1016/j.molbiopara.2007.06.001. View

3.
Otto T, Wilinski D, Assefa S, Keane T, Sarry L, Bohme U . New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol Microbiol. 2010; 76(1):12-24. PMC: 2859250. DOI: 10.1111/j.1365-2958.2009.07026.x. View

4.
Kennedy M, Wang J, Zhang Y, Miles A, Chitsaz F, Saul A . In vitro studies with recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1): production and activity of an AMA1 vaccine and generation of a multiallelic response. Infect Immun. 2002; 70(12):6948-60. PMC: 133034. DOI: 10.1128/IAI.70.12.6948-6960.2002. View

5.
Mu J, Awadalla P, Duan J, McGee K, Keebler J, Seydel K . Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome. Nat Genet. 2006; 39(1):126-30. DOI: 10.1038/ng1924. View