» Articles » PMID: 20802853

PENALIZED VARIABLE SELECTION PROCEDURE FOR COX MODELS WITH SEMIPARAMETRIC RELATIVE RISK

Overview
Journal Ann Stat
Specialty Public Health
Date 2010 Aug 31
PMID 20802853
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

We study the Cox models with semiparametric relative risk, which can be partially linear with one nonparametric component, or multiple additive or nonadditive nonparametric components. A penalized partial likelihood procedure is proposed to simultaneously estimate the parameters and select variables for both the parametric and the nonparametric parts. Two penalties are applied sequentially. The first penalty, governing the smoothness of the multivariate nonlinear covariate effect function, provides a smoothing spline ANOVA framework that is exploited to derive an empirical model selection tool for the nonparametric part. The second penalty, either the smoothly-clipped-absolute-deviation (SCAD) penalty or the adaptive LASSO penalty, achieves variable selection in the parametric part. We show that the resulting estimator of the parametric part possesses the oracle property, and that the estimator of the nonparametric part achieves the optimal rate of convergence. The proposed procedures are shown to work well in simulation experiments, and then applied to a real data example on sexually transmitted diseases.

Citing Articles

Improved nonparametric survival prediction using CoxPH, Random Survival Forest & DeepHit Neural Network.

Asghar N, Khalil U, Ahmad B, Alshanbari H, Hamraz M, Ahmad B BMC Med Inform Decis Mak. 2024; 24(1):120.

PMID: 38715002 PMC: 11531126. DOI: 10.1186/s12911-024-02525-z.


High-dimensional feature selection in competing risks modeling: A stable approach using a split-and-merge ensemble algorithm.

Sun H, Wang X Biom J. 2022; 65(2):e2100164.

PMID: 35934836 PMC: 10087963. DOI: 10.1002/bimj.202100164.


Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data.

Saegusa T, Ma T, Li G, Chen Y, Ting Lee M Stat Biosci. 2021; 12(3):376-398.

PMID: 33796162 PMC: 8009300. DOI: 10.1007/s12561-020-09284-1.


Variable selection for high-dimensional partly linear additive Cox model with application to Alzheimer's disease.

Wu Q, Zhao H, Zhu L, Sun J Stat Med. 2020; 39(23):3120-3134.

PMID: 32652699 PMC: 7936877. DOI: 10.1002/sim.8594.


Ensemble estimation and variable selection with semiparametric regression models.

Shin S, Liu Y, Cole S, Fine J Biometrika. 2020; 107(2):433-448.

PMID: 32454529 PMC: 7228544. DOI: 10.1093/biomet/asaa012.


References
1.
Zou H, Li R . One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. Ann Stat. 2009; 36(4):1509-1533. PMC: 2759727. DOI: 10.1214/009053607000000802. View

2.
Johnson B, Lin D, Zeng D . Penalized Estimating Functions and Variable Selection in Semiparametric Regression Models. J Am Stat Assoc. 2010; 103(482):672-680. PMC: 2850080. DOI: 10.1198/016214508000000184. View

3.
Huang J, Liu L . Polynomial spline estimation and inference of proportional hazards regression models with flexible relative risk form. Biometrics. 2006; 62(3):793-802. DOI: 10.1111/j.1541-0420.2005.00519.x. View

4.
Cai J, Fan J, Li R, Zhou H . Variable selection for multivariate failure time data. Biometrika. 2009; 92(2):303-316. PMC: 2674767. DOI: 10.1093/biomet/92.2.303. View

5.
Tibshirani R . The lasso method for variable selection in the Cox model. Stat Med. 1997; 16(4):385-95. DOI: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3. View