» Articles » PMID: 19458784

Variable Selection for Multivariate Failure Time Data

Overview
Journal Biometrika
Specialty Public Health
Date 2009 May 22
PMID 19458784
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

In this paper, we proposed a penalised pseudo-partial likelihood method for variable selection with multivariate failure time data with a growing number of regression coefficients. Under certain regularity conditions, we show the consistency and asymptotic normality of the penalised likelihood estimators. We further demonstrate that, for certain penalty functions with proper choices of regularisation parameters, the resulting estimator can correctly identify the true model, as if it were known in advance. Based on a simple approximation of the penalty function, the proposed method can be easily carried out with the Newton-Raphson algorithm. We conduct extensive Monte Carlo simulation studies to assess the finite sample performance of the proposed procedures. We illustrate the proposed method by analysing a dataset from the Framingham Heart Study.

Citing Articles

Testing and Confidence Intervals for High Dimensional Proportional Hazards Model.

Fang E, Ning Y, Liu H J R Stat Soc Series B Stat Methodol. 2023; 79(5):1415-1437.

PMID: 37854943 PMC: 10584375. DOI: 10.1111/rssb.12224.


Regularized Weighted Nonparametric Likelihood Approach for High-Dimension Sparse Subdistribution Hazards Model for Competing Risk Data.

Tapak L, Kosorok M, Sadeghifar M, Hamidi O, Afshar S, Doosti H Comput Math Methods Med. 2021; 2021:5169052.

PMID: 34589136 PMC: 8476266. DOI: 10.1155/2021/5169052.


Ensemble estimation and variable selection with semiparametric regression models.

Shin S, Liu Y, Cole S, Fine J Biometrika. 2020; 107(2):433-448.

PMID: 32454529 PMC: 7228544. DOI: 10.1093/biomet/asaa012.


USING PROFILE LIKELIHOOD FOR SEMIPARAMETRIC MODEL SELECTION WITH APPLICATION TO PROPORTIONAL HAZARDS MIXED MODELS.

Xu R, Vaida F, Harrington D Stat Sin. 2019; 19(2):819-842.

PMID: 31762585 PMC: 6874104.


Bi-level variable selection for case-cohort studies with group variables.

Kim S, Ahn K Stat Methods Med Res. 2018; 28(10-11):3404-3414.

PMID: 30306838 PMC: 6748310. DOI: 10.1177/0962280218803654.


References
1.
Clegg L, Cai J, Sen P . A marginal mixed baseline hazards model for multivariate failure time data. Biometrics. 2001; 55(3):805-12. DOI: 10.1111/j.0006-341x.1999.00805.x. View

2.
Cai J, Prentice R . Regression estimation using multivariate failure time data and a common baseline hazard function model. Lifetime Data Anal. 1997; 3(3):197-213. DOI: 10.1023/a:1009613313677. View

3.
Huang J, Harrington D . Penalized partial likelihood regression for right-censored data with bootstrap selection of the penalty parameter. Biometrics. 2002; 58(4):781-91. DOI: 10.1111/j.0006-341x.2002.00781.x. View

4.
Cai J . Hypothesis testing of hazard ratio parameters in marginal models for multivariate failure time data. Lifetime Data Anal. 1999; 5(1):39-53. DOI: 10.1023/a:1009679032314. View

5.
Lin D . Cox regression analysis of multivariate failure time data: the marginal approach. Stat Med. 1994; 13(21):2233-47. DOI: 10.1002/sim.4780132105. View