Bhagawati M, Paul S, Mantella L, Johri A, Gupta S, Laird J
Diagnostics (Basel). 2024; 14(17).
PMID: 39272680
PMC: 11393849.
DOI: 10.3390/diagnostics14171894.
Sanga P, Singh J, Dubey A, Khanna N, Laird J, Faa G
Diagnostics (Basel). 2023; 13(19).
PMID: 37835902
PMC: 10573070.
DOI: 10.3390/diagnostics13193159.
Bhagawati M, Paul S, Agarwal S, Protogeron A, Sfikakis P, Kitas G
Cardiovasc Diagn Ther. 2023; 13(3):557-598.
PMID: 37405023
PMC: 10315429.
DOI: 10.21037/cdt-22-438.
Cheng A, Kit Lee J, Ngiam K
J Ultrasound. 2022; 26(3):643-651.
PMID: 36053484
PMC: 10468465.
DOI: 10.1007/s40477-022-00698-9.
Munjral S, Maindarkar M, Ahluwalia P, Puvvula A, Jamthikar A, Jujaray T
Diagnostics (Basel). 2022; 12(5).
PMID: 35626389
PMC: 9140106.
DOI: 10.3390/diagnostics12051234.
Contrast-Enhanced Ultrasonography for Differential Diagnosis of Benign and Malignant Thyroid Lesions: Single-Institutional Prospective Study of Qualitative and Quantitative CEUS Characteristics.
Petrasova H, Slaisova R, Rohan T, Stary K, Kyclova J, Pavlik T
Contrast Media Mol Imaging. 2022; 2022:8229445.
PMID: 35542754
PMC: 9056255.
DOI: 10.1155/2022/8229445.
Inter-Variability Study of COVLIAS 1.0: Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography.
Suri J, Agarwal S, Elavarthi P, Pathak R, Ketireddy V, Columbu M
Diagnostics (Basel). 2021; 11(11).
PMID: 34829372
PMC: 8625039.
DOI: 10.3390/diagnostics11112025.
Clinical value of SMI Combined with Low-Dose CT Scanning in differential diagnosis of Thyroid Lesions and Tumor Staging.
Xue S, Luo Y, Jiao Z, Xu L
Pak J Med Sci. 2021; 37(5):1347-1352.
PMID: 34475910
PMC: 8377899.
DOI: 10.12669/pjms.37.5.4144.
COVLIAS 1.0: Lung Segmentation in COVID-19 Computed Tomography Scans Using Hybrid Deep Learning Artificial Intelligence Models.
Suri J, Agarwal S, Pathak R, Ketireddy V, Columbu M, Saba L
Diagnostics (Basel). 2021; 11(8).
PMID: 34441340
PMC: 8392426.
DOI: 10.3390/diagnostics11081405.
Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application.
Saba L, Sanagala S, Gupta S, Koppula V, Johri A, Khanna N
Ann Transl Med. 2021; 9(14):1206.
PMID: 34430647
PMC: 8350643.
DOI: 10.21037/atm-20-7676.
Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization.
Johri A, Mantella L, Jamthikar A, Saba L, Laird J, Suri J
Int J Cardiovasc Imaging. 2021; 37(11):3145-3156.
PMID: 34050838
DOI: 10.1007/s10554-021-02294-0.
Wilson disease tissue classification and characterization using seven artificial intelligence models embedded with 3D optimization paradigm on a weak training brain magnetic resonance imaging datasets: a supercomputer application.
Agarwal M, Saba L, Gupta S, Johri A, Khanna N, Mavrogeni S
Med Biol Eng Comput. 2021; 59(3):511-533.
PMID: 33547549
DOI: 10.1007/s11517-021-02322-0.
A Novel Block Imaging Technique Using Nine Artificial Intelligence Models for COVID-19 Disease Classification, Characterization and Severity Measurement in Lung Computed Tomography Scans on an Italian Cohort.
Agarwal M, Saba L, Gupta S, Carriero A, Falaschi Z, Pasche A
J Med Syst. 2021; 45(3):28.
PMID: 33496876
PMC: 7835451.
DOI: 10.1007/s10916-021-01707-w.
Ultrasound-based internal carotid artery plaque characterization using deep learning paradigm on a supercomputer: a cardiovascular disease/stroke risk assessment system.
Saba L, Sanagala S, Gupta S, Koppula V, Johri A, Sharma A
Int J Cardiovasc Imaging. 2021; 37(5):1511-1528.
PMID: 33423132
DOI: 10.1007/s10554-020-02124-9.
Quantification of Morphological Features in Non-Contrast-Enhanced Ultrasound Microvasculature Imaging.
Ghavami S, Bayat M, Fatemi M, Alizad A
IEEE Access. 2020; 8:18925-18937.
PMID: 32328394
PMC: 7179329.
DOI: 10.1109/ACCESS.2020.2968292.
Diagnostic value of 3D power Doppler ultrasound in the characterization of thyroid nodules.
Cansu A, Ayan E, Kul S, Eyuboglu I, Oguz S, Mungan S
Turk J Med Sci. 2019; 49(3):723-729.
PMID: 31203590
PMC: 7018289.
DOI: 10.3906/sag-1803-92.
Automatic skin lesion area determination of basal cell carcinoma using optical coherence tomography angiography and a skeletonization approach: Preliminary results.
Meiburger K, Chen Z, Sinz C, Hoover E, Minneman M, Ensher J
J Biophotonics. 2019; 12(9):e201900131.
PMID: 31100191
PMC: 7065618.
DOI: 10.1002/jbio.201900131.
Value of Contrast-Enhanced Ultrasound and Acoustic Radiation Force Impulse Imaging for the Differential Diagnosis of Benign and Malignant Thyroid Nodules.
He Y, Wang X, Hu Q, Chen X, Ling B, Wei H
Front Pharmacol. 2018; 9:1363.
PMID: 30542283
PMC: 6277905.
DOI: 10.3389/fphar.2018.01363.
Monitoring of tumor vascular normalization: the key points from basic research to clinical application.
Li W, Quan Y, Li Y, Lu L, Cui M
Cancer Manag Res. 2018; 10:4163-4172.
PMID: 30323672
PMC: 6175544.
DOI: 10.2147/CMAR.S174712.
Application of contrast-enhanced ultrasound for evaluation of thyroid nodules.
Zhan J, Ding H
Ultrasonography. 2018; 37(4):288-297.
PMID: 30213158
PMC: 6177690.
DOI: 10.14366/usg.18019.