» Articles » PMID: 20689770

The Glycobiome of the Rumen Bacterium Butyrivibrio Proteoclasticus B316(T) Highlights Adaptation to a Polysaccharide-rich Environment

Overview
Journal PLoS One
Date 2010 Aug 7
PMID 20689770
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

Determining the role of rumen microbes and their enzymes in plant polysaccharide breakdown is fundamental to understanding digestion and maximising productivity in ruminant animals. Butyrivibrio proteoclasticus B316(T) is a gram-positive, butyrate-forming rumen bacterium with a key role in plant polysaccharide degradation. The 4.4 Mb genome consists of 4 replicons; a chromosome, a chromid and two megaplasmids. The chromid is the smallest reported for all bacteria, and the first identified from the phylum Firmicutes. B316 devotes a large proportion of its genome to the breakdown and reassembly of complex polysaccharides and has a highly developed glycobiome when compared to other sequenced bacteria. The secretion of a range of polysaccharide-degrading enzymes which initiate the breakdown of pectin, starch and xylan, a subtilisin family protease active against plant proteins, and diverse intracellular enzymes to break down oligosaccharides constitute the degradative capability of this organism. A prominent feature of the genome is the presence of multiple gene clusters predicted to be involved in polysaccharide biosynthesis. Metabolic reconstruction reveals the absence of an identifiable gene for enolase, a conserved enzyme of the glycolytic pathway. To our knowledge this is the first report of an organism lacking an enolase. Our analysis of the B316 genome shows how one organism can contribute to the multi-organism complex that rapidly breaks down plant material in the rumen. It can be concluded that B316, and similar organisms with broad polysaccharide-degrading capability, are well suited to being early colonizers and degraders of plant polysaccharides in the rumen environment.

Citing Articles

The vast landscape of carbohydrate fermentation in prokaryotes.

Hackmann T FEMS Microbiol Rev. 2024; 48(4).

PMID: 38821505 PMC: 11187502. DOI: 10.1093/femsre/fuae016.


Genome reduction and horizontal gene transfer in the evolution of Endomicrobia-rise and fall of an intracellular symbiosis with termite gut flagellates.

Mies U, Herve V, Kropp T, Platt K, Sillam-Dusses D, Sobotnik J mBio. 2024; 15(6):e0082624.

PMID: 38742878 PMC: 11257099. DOI: 10.1128/mbio.00826-24.


New biochemical pathways for forming short-chain fatty acids during fermentation in rumen bacteria.

Hackmann T JDS Commun. 2024; 5(3):230-235.

PMID: 38646572 PMC: 11026938. DOI: 10.3168/jdsc.2023-0427.


Gut Microbiota and Blood Metabolites Related to Fiber Intake and Type 2 Diabetes.

Wang Z, Peters B, Yu B, Grove M, Wang T, Xue X Circ Res. 2024; 134(7):842-854.

PMID: 38547246 PMC: 10987058. DOI: 10.1161/CIRCRESAHA.123.323634.


Exploring the microbial diversity and characterization of cellulase and hemicellulase genes in goat rumen: a metagenomic approach.

Thapa S, Zhou S, OHair J, Al Nasr K, Ropelewski A, Li H BMC Biotechnol. 2023; 23(1):51.

PMID: 38049781 PMC: 10696843. DOI: 10.1186/s12896-023-00821-6.


References
1.
Layec S, Decaris B, Leblond-Bourget N . Diversity of Firmicutes peptidoglycan hydrolases and specificities of those involved in daughter cell separation. Res Microbiol. 2008; 159(7-8):507-15. DOI: 10.1016/j.resmic.2008.06.008. View

2.
Cooper R . Metabolism of methylglyoxal in microorganisms. Annu Rev Microbiol. 1984; 38:49-68. DOI: 10.1146/annurev.mi.38.100184.000405. View

3.
Din N, Damude H, Gilkes N, Miller Jr R, Warren R, Kilburn D . C1-Cx revisited: intramolecular synergism in a cellulase. Proc Natl Acad Sci U S A. 1994; 91(24):11383-7. PMC: 45235. DOI: 10.1073/pnas.91.24.11383. View

4.
Shimoyama T, Kato S, Ishii S, Watanabe K . Flagellum mediates symbiosis. Science. 2009; 323(5921):1574. DOI: 10.1126/science.1170086. View

5.
Moon C, Pacheco D, Kelly W, Leahy S, Li D, Kopecny J . Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Int J Syst Evol Microbiol. 2008; 58(Pt 9):2041-5. DOI: 10.1099/ijs.0.65845-0. View