» Articles » PMID: 20688982

Structural Basis for Activation of Class Ib Ribonucleotide Reductase

Overview
Journal Science
Specialty Science
Date 2010 Aug 7
PMID 20688982
Citations 78
Authors
Affiliations
Soon will be listed here.
Abstract

The class Ib ribonucleotide reductase of Escherichia coli can initiate reduction of nucleotides to deoxynucleotides with either a Mn(III)2-tyrosyl radical (Y•) or a Fe(III)2-Y• cofactor in the NrdF subunit. Whereas Fe(III)2-Y• can self-assemble from Fe(II)2-NrdF and O2, activation of Mn(II)2-NrdF requires a reduced flavoprotein, NrdI, proposed to form the oxidant for cofactor assembly by reduction of O2. The crystal structures reported here of E. coli Mn(II)2-NrdF and Fe(II)2-NrdF reveal different coordination environments, suggesting distinct initial binding sites for the oxidants during cofactor activation. In the structures of Mn(II)2-NrdF in complex with reduced and oxidized NrdI, a continuous channel connects the NrdI flavin cofactor to the NrdF Mn(II)2 active site. Crystallographic detection of a putative peroxide in this channel supports the proposed mechanism of Mn(III)2-Y• cofactor assembly.

Citing Articles

O Activation and Enzymatic C-H Bond Activation Mediated by a Dimanganese Cofactor.

Liu C, Rao G, Nguyen J, Britt R, Rittle J J Am Chem Soc. 2025; 147(2):2148-2157.

PMID: 39741465 PMC: 11819613. DOI: 10.1021/jacs.4c16271.


Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.

Capdevila D, Rondon J, Edmonds K, Rocchio J, Villarruel Dujovne M, Giedroc D Chem Rev. 2024; 124(24):13574-13659.

PMID: 39658019 PMC: 11672702. DOI: 10.1021/acs.chemrev.4c00264.


Structural insights into the initiation of free radical formation in the Class Ib ribonucleotide reductases in Mycobacteria.

Yadav L, Sharma V, Shanmugam M, Mande S Curr Res Struct Biol. 2024; 8:100157.

PMID: 39399574 PMC: 11470190. DOI: 10.1016/j.crstbi.2024.100157.


Class Ib Ribonucleotide Reductases: Activation of a Peroxido-MnMn to Generate a Reactive Oxo-MnMn Oxidant.

Doyle L, Magherusan A, Xu S, Murphy K, Farquhar E, Molton F Inorg Chem. 2024; 63(4):2194-2203.

PMID: 38231137 PMC: 10828993. DOI: 10.1021/acs.inorgchem.3c04163.


Homologous acetone carboxylases select Fe(II) or Mn(II) as the catalytic cofactor.

Shisler K, Kincannon W, Mattice J, Larson J, Valaydon-Pillay A, Mus F mBio. 2023; 15(2):e0298723.

PMID: 38126751 PMC: 10865871. DOI: 10.1128/mbio.02987-23.


References
1.
Cotruvo Jr J, Stubbe J . NrdI, a flavodoxin involved in maintenance of the diferric-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase. Proc Natl Acad Sci U S A. 2008; 105(38):14383-8. PMC: 2567162. DOI: 10.1073/pnas.0807348105. View

2.
Eklund H, Uhlin U, Farnegardh M, Logan D, Nordlund P . Structure and function of the radical enzyme ribonucleotide reductase. Prog Biophys Mol Biol. 2002; 77(3):177-268. DOI: 10.1016/s0079-6107(01)00014-1. View

3.
Willing A, Follmann H, Auling G . Ribonucleotide reductase of Brevibacterium ammoniagenes is a manganese enzyme. Eur J Biochem. 1988; 170(3):603-11. DOI: 10.1111/j.1432-1033.1988.tb13740.x. View

4.
Do L, Hayashi T, Moenne-Loccoz P, Lippard S . Carboxylate as the protonation site in (Peroxo)diiron(III) model complexes of soluble methane monooxygenase and related diiron proteins. J Am Chem Soc. 2010; 132(4):1273-5. PMC: 2812653. DOI: 10.1021/ja909718f. View

5.
Sazinsky M, Lippard S . Product bound structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): protein motion in the alpha-subunit. J Am Chem Soc. 2005; 127(16):5814-25. DOI: 10.1021/ja044099b. View